当前位置:首页 > 编程笔记 > 正文
已解决

【safetensor】介绍和基础代码

来自网友在路上 141841提问 提问时间:2023-10-23 20:14:39阅读次数: 41

最佳答案 问答题库418位专家为你答疑解惑

Hugging Face, EleutherAI, StabilityAI 用的多

介绍

文件形式

  • header,体现其特性。如果强行将pickle或者空软连接 打开,会出现报错。解决详见:debug 连接到其他教程
  • 结构和参数
    数据结构

安装

with pip:Copied
pip install safetensors
with conda:Copied
conda install -c huggingface safetensors

Usage

文档: https://huggingface.co/docs/safetensors/index
github: https://github.com/huggingface/safetensors

测试安装

import torch
from safetensors import safe_open
from safetensors.torch import save_filetensors = {"weight1": torch.zeros((1024, 1024)),"weight2": torch.zeros((1024, 1024))
}
save_file(tensors, "model.safetensors")tensors = {}
with safe_open("model.safetensors", framework="pt", device="cpu") as f:for key in f.keys():tensors[key] = f.get_tensor(key)

加载

文档 https://huggingface.co/docs/diffusers/using-diffusers/using_safetensors

from diffusers import StableDiffusionPipelinepipeline = StableDiffusionPipeline.from_single_file("https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
)

Load tensors


from safetensors import safe_opentensors = {}
with safe_open("model.safetensors", framework="pt", device=0) as f:for k in f.keys():tensors[k] = f.get_tensor(k)
# Loading only part of the tensors (interesting when running on multiple GPU)from safetensors import safe_opentensors = {}
with safe_open("model.safetensors", framework="pt", device=0) as f:tensor_slice = f.get_slice("embedding")vocab_size, hidden_dim = tensor_slice.get_shape()tensor = tensor_slice[:, :hidden_dim]

保存


import torch
from safetensors.torch import save_filetensors = {"embedding": torch.zeros((2, 2)),"attention": torch.zeros((2, 3))
}
save_file(tensors, "model.safetensors")

转换到safetensor

  • 在线,利用hugging face

The easiest way to convert your model weights is to use the Convert Space, given your model weights are already stored on the Hub. The Convert Space downloads the pickled weights, converts them, and opens a Pull Request to upload the newly converted .safetensors file to your repository.

  • 本地 运行
    see 转换代码 convert.py
# 主函数
def convert_file(pt_filename: str,sf_filename: str,
):loaded = torch.load(pt_filename, map_location="cpu")if "state_dict" in loaded:loaded = loaded["state_dict"]shared = shared_pointers(loaded)for shared_weights in shared:for name in shared_weights[1:]:loaded.pop(name)# For tensors to be contiguousloaded = {k: v.contiguous() for k, v in loaded.items()}dirname = os.path.dirname(sf_filename)os.makedirs(dirname, exist_ok=True)save_file(loaded, sf_filename, metadata={"format": "pt"})check_file_size(sf_filename, pt_filename)reloaded = load_file(sf_filename)for k in loaded:pt_tensor = loaded[k]sf_tensor = reloaded[k]if not torch.equal(pt_tensor, sf_tensor):raise RuntimeError(f"The output tensors do not match for key {k}")

例子

解析

import requests # pip install requests
import structdef parse_single_file(url):# Fetch the first 8 bytes of the fileheaders = {'Range': 'bytes=0-7'}response = requests.get(url, headers=headers)# Interpret the bytes as a little-endian unsigned 64-bit integerlength_of_header = struct.unpack('<Q', response.content)[0]# Fetch length_of_header bytes starting from the 9th byteheaders = {'Range': f'bytes=8-{7 + length_of_header}'}response = requests.get(url, headers=headers)# Interpret the response as a JSON objectheader = response.json()return headerurl = "https://huggingface.co/gpt2/resolve/main/model.safetensors"
header = parse_single_file(url)print(header)
查看全文

99%的人还看了

猜你感兴趣

版权申明

本文"【safetensor】介绍和基础代码":http://eshow365.cn/6-22675-0.html 内容来自互联网,请自行判断内容的正确性。如有侵权请联系我们,立即删除!