当前位置:首页 > 编程笔记 > 正文
已解决

论文笔记:ViTGAN: Training GANs with Vision Transformers

来自网友在路上 150850提问 提问时间:2023-09-26 07:16:39阅读次数: 50

最佳答案 问答题库508位专家为你答疑解惑

2021

1 intro

  • 论文研究的问题是:ViT是否可以在不使用卷积或池化的情况下完成图像生成任务
    • 即不用CNN,而使用ViT来完成图像生成任务
  • 将ViT架构集成到GAN中,发现现有的GAN正则化方法与self-attention机制的交互很差,导致训练过程中严重的不稳定
    • ——>引入了新的正则化技术来训练带有ViT的GAN
    • ViTGAN模型远优于基于Transformer的GAN模型,在不使用卷积或池化的情况下,性能与基于CNN的GAN(如Style-GAN2)相当
    • ViTGAN模型是首个在GAN中利用视觉Transformer的模型之一

2 方法

  • 直接使用ViT作为鉴别器会使训练变得不稳定。
    • 论文对生成器和鉴别器都引入了新的技术,用来稳定训练动态并促进收敛。
      • (1)ViT鉴别器的正则化;
      • (2)生成器的新架构

 2.1 ViT鉴别器的正则化

  • 利普希茨连续(Lipschitz continuity)在GAN鉴别器中很重要
    • GAN笔记:利普希茨连续(Lipschitz continuity)_UQI-LIUWJ的博客-CSDN博客
  • 然而,最近的一项工作表明,标准dot product self-attention层的Lipschitz常数可以是无界的,使Lipschitz连续在ViTs中被违反。
    • —>1,用欧氏距离代替点积相似度
    • —>2,在初始化时将每层的归一化权重矩阵与spectral norm相乘
      • 对于任意矩阵 A,其Spectral Norm定义为:
        • 也可以定义为矩阵 A 的最大奇异值
        • σ计算矩阵的Spectral Norm

2.2 设计生成器

3  实验

 

查看全文

99%的人还看了

猜你感兴趣

版权申明

本文"论文笔记:ViTGAN: Training GANs with Vision Transformers":http://eshow365.cn/6-13770-0.html 内容来自互联网,请自行判断内容的正确性。如有侵权请联系我们,立即删除!