3+单细胞+代谢+WGCNA+机器学习
最佳答案 问答题库518位专家为你答疑解惑
今天给同学们分享一篇生信文章“Identification of new co-diagnostic genes for sepsis and metabolic syndrome using single-cell data analysis and machine learning algorithms”,这篇文章发表Front Genet.期刊上,影响因子为3.7。
结果解读:
常见差异基因的筛选
如图1所示,研究流程图解释了它是如何进行的。在校正和归一化之前,在三个数据集(GSE28750、GSE154918和GSE98895)上进行PCA。数据集被标准化,在脓毒症中发现3902个DEG(1930个上调和1972个下调),而在MetS中发现2639个DEGs(1354个上调和1285个下调)。通过鉴定脓毒症和代谢综合征之间的常见DEG,发现了122个常见的上调DEG和90个常见的下调DEG(图2A、B)。对已鉴定的常见DEG进行GO富集分析,以研究其生物学功能和途径。根据GO分析,常见上调的DEG主要参与细胞活化和白细胞活化,参与免疫反应和调节分泌途径,而常见下调的DEG富集于上皮
WGCNA共表达基因模块的分析
在阈值为80的情况下,检测并去除了2个异常样本,保留了98个样本。“WGCNA”软件包的“pick Soft Threshold”功能用于过滤1到30之间的功率参数。作为软阈值,选择6的幂以确保无标度网络(图3A)。使用“叉树”动态和模块特征基因函数,共获得了14个包含具有相似共表达性状的基因的模块(图3B)。热图显示了每个模块与疾病之间的相关性(图3C)。“棕色”模块表明脓毒症和代谢综合征高度相关(脓毒症:r=0.46,p=0.009;代谢综合征:r=0.26,p=0.003)。脓毒症与代谢综合征在棕色模块中具有正相关基因(脓毒病:cor=0.38,p=2.8e-18;代谢综合症:cor=0.37,p=2.4e-17)(图3D,E)。对该棕色模块基因进行GO分析。
利用机器学习识别候选关键基因
作者使用RF算法结合LASSO回归,最终获得了7个诊断基因,包括STOM、BATF、CASP4、MAP3K14、MT1F、CFLAR、UROD(图4A–D)。之后,作者评估了这些基因的诊断价值。ROC曲线的AUC值分别为STOM的0.995、BATF的0.996、CASP4的0.995、MAP3K14的0.995。所有7个基因特征的AUC>0.9具有较高的准确性,证明了它们的预测能力。基于训练集GSE154918,作者构建了候选基因模型(STOM、BATF、CASP4、MAP3K14、MT1F、CFLAR),并在验证集GSE28750上对其进行了评估。如图4E所示,在GSE154918中,ROC值的AUC为0.997,PR值为0.995。
脓毒症和代谢综合征患者免疫细胞的浸润
对有免疫浸润的脓毒症和代谢综合征患者进行了研究。此外,热图显示了免疫细胞中七个关键基因的差异表达(图5B,D)。正常组织比脓毒症组织含有更少的中性粒细胞和单核细胞(p<0.05)。脓毒症患者组织和正常组织的比较显示,脓毒症的组织含有明显更少的幼稚B细胞、记忆幼稚B细胞,CD8幼稚T细胞和CD4幼稚T细胞(图5A)。STOM、BATF、CASP4、MT1F、CFLAR和UROD的表达与静息NK细胞、CD4幼稚T细胞、CD8 T细胞和CD4静息T细胞的浸润水平呈负相关。MAP3K14的表达与中性粒细胞、活化肥大细胞、单核细胞、巨噬细胞M0和NK活化细胞呈负相关(图5B)。
脓毒症和正常患者的单细胞测序分析
为了检查单细胞数据集GSE167363的质量,进行了初步质量检查。nFeature RNA、nCount RNA和prent之间的相关性。对mt进行了检测,以确保研究中使用的细胞样品具有高质量。图6A显示了nCount RNA和代表独特分子标识符的nFeature RNA之间的正相关,相关系数为0.94。作者排除了一些细胞,结果如图6B、C所示。在scRNA-seq数据集中,共鉴定了3000个具有高水平变异的基因,并标记了10个最重要的标记。对前20个PC进行了主成分分析(图6D)。使用t-SNE算法对细胞进行聚类,获得21个聚类(图7A)。
总结
使用单细胞分析和WGCNA以及机器学习技术的组合来鉴定脓毒症和MetS中涉及的效应基因。此外,还发现疾病诊断基因与多种免疫细胞和代谢途径有关。葡萄糖代谢相关途径可能在脓毒症和代谢综合征中都很常见,在脓毒症患者中,葡萄糖代谢可能通过单核细胞和NK细胞发挥作用。作者发现CFLAR基因可能在脓毒症患者的葡萄糖代谢中发挥关键作用。本研究可能为脓毒症的诊断和治疗提供一种新的方法。
99%的人还看了
相似问题
- 4月2日-3日·上海 | 3DCC 第二届3D细胞培养与类器官研发峰会携手CGT Asia 重磅来袭
- 深度学习数据集—细胞、微生物、显微图像数据集大合集
- 3+单细胞+代谢+WGCNA+机器学习
- 【生物信息学】单细胞RNA测序数据分析:计算亲和力矩阵(基于距离、皮尔逊相关系数)及绘制热图(Heatmap)
- SiR-NHS酯标记细胞信号的动态观察
- 关于癌细胞MR的几种类型,T1,T2,DCE,DWI,ADC
- 在模拟冷藏牛肉加工条件下,冷和酸对荧光假单胞菌和单核细胞增生李斯特菌双菌种生物膜的综合影响
- 9+铜死亡+缺氧+分型+单细胞+实验生信思路
- 5+单细胞+脂质代谢+预后模型+实验
- 8+单基因+细胞凋亡+WGCNA+单细胞+实验验证
猜你感兴趣
版权申明
本文"3+单细胞+代谢+WGCNA+机器学习":http://eshow365.cn/6-32544-0.html 内容来自互联网,请自行判断内容的正确性。如有侵权请联系我们,立即删除!