已解决
机器学习-朴素贝叶斯之多项式模型
来自网友在路上 164864提问 提问时间:2023-10-30 21:01:19阅读次数: 64
最佳答案 问答题库648位专家为你答疑解惑
多项式模型:
记住一定用于离散的对象,不能是连续的
于高斯分布相反,多项式模型主要适用于离散特征的概率计算,切sklearn的多项式模型不接受输入负值
因为多项式不接受负值的输入,所以样本数据的特征为数值型数据,必须归一化处理保证数据里没有负数
其中需要用到贝叶斯概率公式:如下
当分子出现0时候,需要用到拉普拉斯平滑系数
贝叶斯概率公式,来自Wang’s Blog的原创
模型构建与训练:
需要用到的api是:from sklearn.naive_bayes import MultinomialNB
我们还需要对文章内容进行提取需要用到的api是:from sklearn.feature_extraction.text import TfidfVectorizer
英文的可以用这种方法进行分词中文的需要自己进行分词
实验如下:
导入贝叶斯多项式模型
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
import sklearn.datasets as datasets
data = datasets.fetch_20newsgroups(data_home='./datasets',subset='all')
feature = data['data']#初始未进行特征值化
target = data['target']
# 分别创建模型,数据统计的实例对象
nb = MultinomialNB()
tf = TfidfVectorizer()
tf_feature = tf.fit_transform(feature)# 进行了特征值化
# 进行数据集切分
x_train, x_test, y_train, y_test = train_test_split(tf_feature,target,test_size=0.1,random_state=2023)
# 将训练集放入模型中进行训练模型
nb.fit(x_train,y_train)
# 输出训练后的模型里放入测试集的准确率
print(nb.score(x_test,y_test))
print(target)
print(feature)
输出结果:
显示的没办法爬数据,我又换了一组数据
# 导入贝叶斯多项式模型
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
import sklearn.datasets as datasets
# data = datasets.fetch_20newsgroups(data_home='./datasets', subset='all')
data = datasets.load_iris()
feature = data['data']#初始未进行特征值化
target = data['target']
# 分别创建模型,数据统计的实例对象
nb = MultinomialNB()
# tf = TfidfVectorizer()
# feature = tf.fit_transform(feature)# 进行了特征值化
# 进行数据集切分
x_train, x_test, y_train, y_test = train_test_split(feature,target,test_size=0.1,random_state=2023)
# 将训练集放入模型中进行训练模型
nb.fit(x_train,y_train)print(target)
print(feature)
# 输出训练后的模型里放入测试集的准确率
print(nb.score(x_test,y_test))
此时输出结果:
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2]
[[5.1 3.5 1.4 0.2][4.9 3. 1.4 0.2][4.7 3.2 1.3 0.2][4.6 3.1 1.5 0.2][5. 3.6 1.4 0.2][5.4 3.9 1.7 0.4][4.6 3.4 1.4 0.3][5. 3.4 1.5 0.2][4.4 2.9 1.4 0.2][4.9 3.1 1.5 0.1][5.4 3.7 1.5 0.2][4.8 3.4 1.6 0.2][4.8 3. 1.4 0.1][4.3 3. 1.1 0.1][5.8 4. 1.2 0.2][5.7 4.4 1.5 0.4][5.4 3.9 1.3 0.4][5.1 3.5 1.4 0.3][5.7 3.8 1.7 0.3][5.1 3.8 1.5 0.3][5.4 3.4 1.7 0.2][5.1 3.7 1.5 0.4][4.6 3.6 1. 0.2][5.1 3.3 1.7 0.5][4.8 3.4 1.9 0.2][5. 3. 1.6 0.2][5. 3.4 1.6 0.4][5.2 3.5 1.5 0.2][5.2 3.4 1.4 0.2][4.7 3.2 1.6 0.2][4.8 3.1 1.6 0.2][5.4 3.4 1.5 0.4][5.2 4.1 1.5 0.1][5.5 4.2 1.4 0.2][4.9 3.1 1.5 0.2][5. 3.2 1.2 0.2][5.5 3.5 1.3 0.2][4.9 3.6 1.4 0.1][4.4 3. 1.3 0.2][5.1 3.4 1.5 0.2][5. 3.5 1.3 0.3][4.5 2.3 1.3 0.3][4.4 3.2 1.3 0.2][5. 3.5 1.6 0.6][5.1 3.8 1.9 0.4][4.8 3. 1.4 0.3][5.1 3.8 1.6 0.2][4.6 3.2 1.4 0.2][5.3 3.7 1.5 0.2][5. 3.3 1.4 0.2][7. 3.2 4.7 1.4][6.4 3.2 4.5 1.5][6.9 3.1 4.9 1.5][5.5 2.3 4. 1.3][6.5 2.8 4.6 1.5][5.7 2.8 4.5 1.3][6.3 3.3 4.7 1.6][4.9 2.4 3.3 1. ][6.6 2.9 4.6 1.3][5.2 2.7 3.9 1.4][5. 2. 3.5 1. ][5.9 3. 4.2 1.5][6. 2.2 4. 1. ][6.1 2.9 4.7 1.4][5.6 2.9 3.6 1.3][6.7 3.1 4.4 1.4][5.6 3. 4.5 1.5][5.8 2.7 4.1 1. ][6.2 2.2 4.5 1.5][5.6 2.5 3.9 1.1][5.9 3.2 4.8 1.8][6.1 2.8 4. 1.3][6.3 2.5 4.9 1.5][6.1 2.8 4.7 1.2][6.4 2.9 4.3 1.3][6.6 3. 4.4 1.4][6.8 2.8 4.8 1.4][6.7 3. 5. 1.7][6. 2.9 4.5 1.5][5.7 2.6 3.5 1. ][5.5 2.4 3.8 1.1][5.5 2.4 3.7 1. ][5.8 2.7 3.9 1.2][6. 2.7 5.1 1.6][5.4 3. 4.5 1.5][6. 3.4 4.5 1.6][6.7 3.1 4.7 1.5][6.3 2.3 4.4 1.3][5.6 3. 4.1 1.3][5.5 2.5 4. 1.3][5.5 2.6 4.4 1.2][6.1 3. 4.6 1.4][5.8 2.6 4. 1.2][5. 2.3 3.3 1. ][5.6 2.7 4.2 1.3][5.7 3. 4.2 1.2][5.7 2.9 4.2 1.3][6.2 2.9 4.3 1.3][5.1 2.5 3. 1.1][5.7 2.8 4.1 1.3][6.3 3.3 6. 2.5][5.8 2.7 5.1 1.9][7.1 3. 5.9 2.1][6.3 2.9 5.6 1.8][6.5 3. 5.8 2.2][7.6 3. 6.6 2.1][4.9 2.5 4.5 1.7][7.3 2.9 6.3 1.8][6.7 2.5 5.8 1.8][7.2 3.6 6.1 2.5][6.5 3.2 5.1 2. ][6.4 2.7 5.3 1.9][6.8 3. 5.5 2.1][5.7 2.5 5. 2. ][5.8 2.8 5.1 2.4][6.4 3.2 5.3 2.3][6.5 3. 5.5 1.8][7.7 3.8 6.7 2.2][7.7 2.6 6.9 2.3][6. 2.2 5. 1.5][6.9 3.2 5.7 2.3][5.6 2.8 4.9 2. ][7.7 2.8 6.7 2. ][6.3 2.7 4.9 1.8][6.7 3.3 5.7 2.1][7.2 3.2 6. 1.8][6.2 2.8 4.8 1.8][6.1 3. 4.9 1.8][6.4 2.8 5.6 2.1][7.2 3. 5.8 1.6][7.4 2.8 6.1 1.9][7.9 3.8 6.4 2. ][6.4 2.8 5.6 2.2][6.3 2.8 5.1 1.5][6.1 2.6 5.6 1.4][7.7 3. 6.1 2.3][6.3 3.4 5.6 2.4][6.4 3.1 5.5 1.8][6. 3. 4.8 1.8][6.9 3.1 5.4 2.1][6.7 3.1 5.6 2.4][6.9 3.1 5.1 2.3][5.8 2.7 5.1 1.9][6.8 3.2 5.9 2.3][6.7 3.3 5.7 2.5][6.7 3. 5.2 2.3][6.3 2.5 5. 1.9][6.5 3. 5.2 2. ][6.2 3.4 5.4 2.3][5.9 3. 5.1 1.8]]
0.9333333333333333
输出的效果还挺不错
查看全文
99%的人还看了
相似问题
- 最新AIGC创作系统ChatGPT系统源码,支持最新GPT-4-Turbo模型,支持DALL-E3文生图,图片对话理解功能
- 思维模型 等待效应
- FinGPT:金融垂类大模型架构
- 人工智能基础_机器学习044_使用逻辑回归模型计算逻辑回归概率_以及_逻辑回归代码实现与手动计算概率对比---人工智能工作笔记0084
- Pytorch完整的模型训练套路
- Doris数据模型的选择建议(十三)
- python自动化标注工具+自定义目标P图替换+深度学习大模型(代码+教程+告别手动标注)
- ChatGLM2 大模型微调过程中遇到的一些坑及解决方法(更新中)
- Python实现WOA智能鲸鱼优化算法优化随机森林分类模型(RandomForestClassifier算法)项目实战
- 扩散模型实战(十一):剖析Stable Diffusion Pipeline各个组件
猜你感兴趣
版权申明
本文"机器学习-朴素贝叶斯之多项式模型":http://eshow365.cn/6-28049-0.html 内容来自互联网,请自行判断内容的正确性。如有侵权请联系我们,立即删除!
- 上一篇: Webpack5中devServer配置contentBase报错的问题
- 下一篇: 决策树的优缺点