已解决
Pytorch实战教程(一)-神经网络与模型训练
来自网友在路上 189889提问 提问时间:2023-11-11 18:26:57阅读次数: 89
最佳答案 问答题库898位专家为你答疑解惑
0. 前言
人工神经网络 (Artificial Neural Network
, ANN
) 是一种监督学习算法,其灵感来自人类大脑的运作方式。类似于人脑中神经元连接和激活的方式,神经网络接受输入,通过某些函数在网络中进行传递,导致某些后续神经元被激活,从而产生输出。函数越复杂,网络对于输入的数据拟合能力就越大,因此预测的准确性就越高。
有多种不同的 ANN
架构,根据通用逼近定理,我们总能找到一个足够大的包含正确权重集的神经网络架构,可以准确地预测任何给定输入的输出结果。这意味着,对于给定的数据集/任务,我们可以创建一个架构并不断调整其权重,直到 ANN
预测出正确结果,调整网络权重的过程称为训练神经网络。
计算机视觉中的一项重要任务是识别图像中的对象类别,即图像分类,ImageNet
是图像分类领域的一项权威竞赛,历年分类准确率情况如下:
从上图可以看出,通过利用神经网络,模型错误率显着减少,随着时间的推移,神经网络逐渐变得更深、更复杂,分类错误率不断减少,并表现出超越人类的水平。
在本节中,我们将使用一个简单的数据集创建一个简单的神经网络架构,以了解 ANN
的各个组成部分(前向传播、反向传播、学习率等)对于模型权重调整的作用,以掌握神经网络如何根据给定
查看全文
99%的人还看了
相似问题
- 13、深度学习之神经网络
- 基于人工大猩猩部队算法优化概率神经网络PNN的分类预测 - 附代码
- 动手学深度学习——循环神经网络的从零开始实现(原理解释+代码详解)
- 基于混沌博弈算法优化概率神经网络PNN的分类预测 - 附代码
- CNN卷积神经网络Python实现
- EI论文程序:Adaboost-BP神经网络的回归预测算法,可作为深度学习对比预测模型,丰富实验内容,自带数据集,直接运行!
- 竞赛 题目:基于机器视觉opencv的手势检测 手势识别 算法 - 深度学习 卷积神经网络 opencv python
- YOLOv8优化策略:轻量级Backbone改进 | VanillaNet极简神经网络模型 | 华为诺亚2023
- BatchNormalization:解决神经网络中的内部协变量偏移问题
- 基于灰色神经网络的预测算法——订单需求预测
猜你感兴趣
版权申明
本文"Pytorch实战教程(一)-神经网络与模型训练":http://eshow365.cn/6-37851-0.html 内容来自互联网,请自行判断内容的正确性。如有侵权请联系我们,立即删除!
- 上一篇: C++(17):invoke
- 下一篇: 第十三章《搞懂算法:神经网络是怎么回事》笔记