已解决
Peter算法小课堂—单调子序列
来自网友在路上 182882提问 提问时间:2023-11-07 12:43:12阅读次数: 82
最佳答案 问答题库828位专家为你答疑解惑
最长上升子序列
dp解法:
f[i]表示以i结尾的最长上升子序列的长度
按照倒数第二个选谁分类:
我们先扫描i号元素前的每个元素(正向),找出第一个比i号元素小的元素k号。①仍然选i号元素,f[i]。②选k号,f[k]+1
但是,这种解法时间复杂度为O(N^2),一但长度到200,就会扣分,我们这次就讨论O(nlog n)的算法。
不升子序列最小划分数
我们用贪心解决这个问题。定义d[i]为第i条不升子序列的最后一个数,cnt代表有几个子序列
我们先扫描每个数字x[i],再枚举每一个子序列,判断是否能接在某个子序列后,如果不行,则新增一个序列即可。
#include <bits/stdc++.h>
#define N 1005
using namespace std;
int n,i,j,d[N],x[N];
int main(){cin>>n;for(int i=0;i<n;i++) cin>>x[i];int cnt=0;for(i=0;i<n;i++){for(j=0;j<cnt;j++)if(d[j]>=x[i]) break;d[j]=x[i];if(j==cnt) cnt++;}cout<<cnt<<endl;return 0;
}
但是这个算法时间复杂度也是O(N^2),我们要进行优化
我相信,聪明的你们一定能想到二分查找
#include <bits/stdc++.h>
#define N 1005
#define INF 2e9
using namespace std;
int n,d[N],x[N];
int main(){cin>>n;for(int i=0;i<n;i++) cin>>x[i];fill(d,d+n,INF);for(i=0;i<n;i++)*lower_bound(d,d+n,x[i])=x[i];int cnt=lower_bound(d,d+n,INF)-d;cout<<cnt<<endl;return 0;
}
Dilworth反链
LIS为最长子序列, 那么说明一定能找到LIS个数,从左往右是递增的。那么这些树一定不能放在同一组内,不然与不升矛盾。到目前为止,每个数单独为一组,已经开了LIS组了。说明任何一种满足要求的分组,组数都>=LIS。
所以,回到LIS,代码如下👇
#include <bits/stdc++.h>
#define N 1005
#define INF 2e9
using namespace std;
int n,d[N],x[N];
int main(){cin>>n;for(int i=0;i<n;i++) cin>>x[i];fill(d,d+n,INF);for(i=0;i<n;i++)*lower_bound(d,d+n,x[i])=x[i];int cnt=lower_bound(d,d+n,INF)-d;cout<<cnt<<endl;return 0;
}
*若为严格下降子序列最小划分,则把lower_bound变为upper_bound
综合运用
希望这些对大家有用,三联必回
查看全文
99%的人还看了
相似问题
- 【Django-DRF用法】多年积累md笔记,第3篇:Django-DRF的序列化和反序列化详解
- 【Java 进阶篇】JavaScript JSON 语法入门:轻松理解数据的序列化和反序列化
- 【python学习】基础篇-常用模块-pickle模块:序列化和反序列化
- ZC序列理论学习及仿真
- 时间序列预测实战(十七)PyTorch实现LSTM-GRU模型长期预测并可视化结果(附代码+数据集+详细讲解)
- 代码随想录算法训练营第二十九天| 491 递增子序列 46 全排列
- 最长递增子序列
- 深入解析序列模型:全面阐释 RNN、LSTM 与 Seq2Seq 的秘密
- c#Nettonsoft.net库常用的方法json序列化反序列化
- 基于C#实现最长公共子序列
猜你感兴趣
版权申明
本文"Peter算法小课堂—单调子序列":http://eshow365.cn/6-34476-0.html 内容来自互联网,请自行判断内容的正确性。如有侵权请联系我们,立即删除!