代码随想录算法训练营第四十一天丨 动态规划part04
最佳答案 问答题库628位专家为你答疑解惑
01背包理论基础
见连接:代码随想录
416. 分割等和子集
思路
01背包问题
背包问题,大家都知道,有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
背包问题有多种背包方式,常见的有:01背包、完全背包、多重背包、分组背包和混合背包等等。
要注意题目描述中商品是不是可以重复放入。
即一个商品如果可以重复多次放入是完全背包,而只能放入一次是01背包,写法还是不一样的。
要明确本题中我们要使用的是01背包,因为元素我们只能用一次。
回归主题:首先,本题要求集合里能否出现总和为 sum / 2 的子集。
那么来一一对应一下本题,看看背包问题如何来解决。
只有确定了如下四点,才能把01背包问题套到本题上来。
- 背包的体积为sum / 2
- 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
- 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
- 背包中每一个元素是不可重复放入。
以上分析完,我们就可以套用01背包,来解决这个问题了。
动规五部曲分析如下:
- 确定dp数组以及下标的含义
01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值最大可以为dp[j]。
本题中每一个元素的数值既是重量,也是价值。
套到本题,dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]。
那么如果背包容量为target, dp[target]就是装满 背包之后的重量,所以 当 dp[target] == target 的时候,背包就装满了。
有录友可能想,那还有装不满的时候?
拿输入数组 [1, 5, 11, 5],举例, dp[7] 只能等于 6,因为 只能放进 1 和 5。
而dp[6] 就可以等于6了,放进1 和 5,那么dp[6] == 6,说明背包装满了。
- 确定递推公式
01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。
所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
- dp数组如何初始化
在01背包,一维dp如何初始化,已经讲过,
从dp[j]的定义来看,首先dp[0]一定是0。
如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。
这样才能让dp数组在递推的过程中取得最大的价值,而不是被初始值覆盖了。
本题题目中 只包含正整数的非空数组,所以非0下标的元素初始化为0就可以了。
代码如下:
// 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
// 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
//确定dp数组及其下标含义、dp数组初始化
int[] dp = new int[target+1];
- 确定遍历顺序
在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中就已经说明:如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!
代码如下:
// 开始 01背包
for(int i = 0; i < nums.size(); i++) {for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);}
}
- 举例推导dp数组
dp[j]的数值一定是小于等于j的。
如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j,理解这一点很重要。
用例1,输入[1,5,11,5] 为例,如图:
最后dp[11] == 11,说明可以将这个数组分割成两个子集,使得两个子集的元素和相等。
代码如下:
class Solution {public boolean canPartition(int[] nums) {int sum = 0;for (int i = 0; i < nums.length; i++) {sum+=nums[i];}if (nums.length<=1 || nums == null|| sum % 2 !=0){return false;}int target = sum / 2;//确定dp数组及其下标含义、dp数组初始化int[] dp = new int[target+1];//确定遍历顺序,先物品再背包。因为使用的是一维数组,需要从后往前遍历for (int i = 0; i < nums.length; i++) {for (int j = target; j >= nums[i]; j--) {dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);}if (dp[target] == target) {return true;}}return false;}
}
0-1背包问题刚接触还不是很牢固,找时间把dp弄成二维数组可能更好理解。
99%的人还看了
相似问题
- AcWing 4. 多重背包问题 I 学习笔记
- 01背包 P1507 NASA的食物计划
- 动态规划解背包问题
- 518. 零钱兑换II(完全背包问题)
- 代码随想录 Day38 完全背包问题 LeetCode T70 爬楼梯 T322 零钱兑换 T279 完全平方数
- 代码随想录第四十四天 | 动态规划 完全背包:纯完全背包理论基础(卡码网第52题);应用(注意遍历顺序):组合(518),排列(377)
- 动态规划算法实现0-1背包问题Java语言实现
- DAY43 完全背包理论基础 + 518.零钱兑换II
- 代码随想录 Day35 动态规划04 01背包问题和完全背包问题 LeetCode T416 分割等和子集
- leetCode 2915. 和为目标值的最长子序列的长度 + 动态规划 +01背包 + 空间优化 + 记忆化搜索 + 递推
猜你感兴趣
版权申明
本文"代码随想录算法训练营第四十一天丨 动态规划part04":http://eshow365.cn/6-30133-0.html 内容来自互联网,请自行判断内容的正确性。如有侵权请联系我们,立即删除!
- 上一篇: Hadoop相关知识点
- 下一篇: 如何利用 ChatGPT 提升编程技能