神经网络的解释方法之CAM、Grad-CAM、Grad-CAM++、LayerCAM
最佳答案 问答题库738位专家为你答疑解惑
2. 更适合同类多目标的情况
GAP全局平均池化
论文:Network In Network
GAP (Global Average Pooling,全局平均池化),在上述论文中提出,用于避免全连接层的过拟合问题。全局平均池化就是对整个特征映射应用平均池化。
图1:将原本h × w × d的三维特征图,具体大小为6 × 6 × 3,经过GAP池化为1 × 1 × 3 输出值。也就是每一个channel的h × w 平均池化为一个值。特征图经过 GAP 处理后每一个特征图包含了不同类别的信息。
GAP平均池化的操作步骤如下:
- 经过卷积操作和激活函数后,得到最后一个卷积层的特征图。
- 对每个通道的特征图进行平均池化,即计算每个通道上所有元素的平均值。这将每个通道的特征图转化为一个标量值。
- 将每个通道的标量值组合成一个特征向量。这些标量值的顺序与通道的顺序相同。
- 最终得到的特征向量可以作为分类器的输入,用于进行图像分类。
CAM
论文:Learning Deep Features for Discriminative Localization
原理:利用最后一个卷积层的特征图与经过GAP分类后概率最大的神经元权重进行叠加。
图2:解释了在CNN中使用全局平均池化(GAP)生成类激活映射(CAM)的过程:
经过最后一层卷积操作之后,得到的特征图包含多个channel,如图1中的不同颜色的3个channel,也就是在GAP之前所对应的不同的channel特征图,就表示第k个channel的特征图。然后经过GAP处理后每个channel的特征图包含了不同类别的信息,
就表示分类概率最大的神经元(图2黑色神经元)所对应连接的第k个神经元的权重。
Grad-CAM
Grad-CAM的前身是 CAM,CAM 的基本的思想是求分类网络某一类别得分对高维特征图 (卷积层的输出) 的偏导数,从而可以得到该高维特征图每个通道对该类别得分的权值;而高维特征图的激活信息 (正值) 又代表了卷积神经网络的所感兴趣的信息,加权后使用热力图呈现得到 CAM。
原理:Grad-CAM的关键思想是将输出类别的梯度(相对于特定卷积层的输出)与该层的输出相乘,然后取平均,得到一个“粗糙”的热力图。这个热力图可以被放大并叠加到原始图像上,以显示模型在分类时最关注的区域。
具体步骤如下:
- 选择网络的最后一个卷积层,因为它既包含了高级特征,也保留了空间信息。
- 前向传播图像到网络,得到你想解释的类别的得分。
- 计算此得分相对于我们选择的卷积层输出的梯度。
- 对于该卷积层的每个通道,使用上述梯度的全局平均值对该通道进行加权。
- 结果是一个与卷积层的空间维度相同的加权热力图。
因为热力图关心的是对分类有正面影响的特征,所以在线性组合的技术上加上了ReLU,以移除负值 。
第 k 个特征图对应于类别 c 的权重,
表示:第 k 个特征图,
表示特征图的像素个数,
表示: 第c类得分的梯度,
表示: 第 k个特征图中坐标( i , j )位置处的像素值;
Grad-CAM代码:
import torch
import cv2
import torch.nn.functional as F
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from PIL import Imageclass GradCAM:def __init__(self, model, target_layer):self.model = model # 要进行Grad-CAM处理的模型self.target_layer = target_layer # 要进行特征可视化的目标层self.feature_maps = None # 存储特征图self.gradients = None # 存储梯度# 为目标层添加钩子,以保存输出和梯度target_layer.register_forward_hook(self.save_feature_maps)target_layer.register_backward_hook(self.save_gradients)def save_feature_maps(self, module, input, output):"""保存特征图"""self.feature_maps = output.detach()def save_gradients(self, module, grad_input, grad_output):"""保存梯度"""self.gradients = grad_output[0].detach()def generate_cam(self, image, class_idx=None):"""生成CAM热力图"""# 将模型设置为评估模式self.model.eval()# 正向传播output = self.model(image)if class_idx is None:class_idx = torch.argmax(output).item()# 清空所有梯度self.model.zero_grad()# 对目标类进行反向传播one_hot = torch.zeros((1, output.size()[-1]), dtype=torch.float32)one_hot[0][class_idx] = 1output.backward(gradient=one_hot.cuda(), retain_graph=True)# 获取平均梯度和特征图pooled_gradients = torch.mean(self.gradients, dim=[0, 2, 3])activation = self.feature_maps.squeeze(0)for i in range(activation.size(0)):activation[i, :, :] *= pooled_gradients[i]# 创建热力图heatmap = torch.mean(activation, dim=0).squeeze().cpu().numpy()heatmap = np.maximum(heatmap, 0)heatmap /= torch.max(heatmap)heatmap = cv2.resize(heatmap, (image.size(3), image.size(2)))heatmap = np.uint8(255 * heatmap)heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)# 将热力图叠加到原始图像上original_image = self.unprocess_image(image.squeeze().cpu().numpy())superimposed_img = heatmap * 0.4 + original_imagesuperimposed_img = np.clip(superimposed_img, 0, 255).astype(np.uint8)return heatmap, superimposed_imgdef unprocess_image(self, image):"""反预处理图像,将其转回原始图像"""mean = np.array([0.485, 0.456, 0.406])std = np.array([0.229, 0.224, 0.225])image = (((image.transpose(1, 2, 0) * std) + mean) * 255).astype(np.uint8)return imagedef visualize_gradcam(model, input_image_path, target_layer):"""可视化Grad-CAM热力图"""# 加载图像img = Image.open(input_image_path)preprocess = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])input_tensor = preprocess(img).unsqueeze(0).cuda()# 创建GradCAMgradcam = GradCAM(model, target_layer)heatmap, result = gradcam.generate_cam(input_tensor)# 显示图像和热力图plt.figure(figsize=(10,10))plt.subplot(1,2,1)plt.imshow(heatmap)plt.title('热力图')plt.axis('off')plt.subplot(1,2,2)plt.imshow(result)plt.title('叠加后的图像')plt.axis('off')plt.show()# 以下是示例代码,显示如何使用上述代码。
# 首先,你需要加载你的模型和权重。
# model = resnet20()
# model.load_state_dict(torch.load("path_to_your_weights.pth"))
# model.to('cuda')# 然后,调用`visualize_gradcam`函数来查看结果。
# visualize_gradcam(model, "path_to_your_input_image.jpg", model.layer3[-1])
Grad-CAM++
99%的人还看了
相似问题
- 【机器学习】特征工程:特征选择、数据降维、PCA
- 论文阅读:“基于特征检测与深度特征描述的点云粗对齐算法”
- 基于纹理特征的kmeas聚类的图像分割方案
- 基于像素特征的kmeas聚类的图像分割方案
- 分类预测 | Matlab实现PSO-GRU-Attention粒子群算法优化门控循环单元融合注意力机制多特征分类预测
- 特征缩放和转换以及自定义Transformers(Machine Learning 研习之九)
- 分类预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多特征分类预测
- 以key为特征,分类多个信息(手机流量栗子)
- 【机器学习】特征工程:特征预处理,归一化、标准化、处理缺失值
- 004 OpenCV akaze特征点检测匹配
猜你感兴趣
版权申明
本文"神经网络的解释方法之CAM、Grad-CAM、Grad-CAM++、LayerCAM":http://eshow365.cn/6-28960-0.html 内容来自互联网,请自行判断内容的正确性。如有侵权请联系我们,立即删除!