已解决
卷积神经网络的发展历史-VGG
来自网友在路上 176876提问 提问时间:2023-10-08 08:41:19阅读次数: 76
最佳答案 问答题库768位专家为你答疑解惑
VGG的产生
2014 年,Simonyan和Zisserman提出了VGG系列模型(包括VGG-11/VGG-13/VGG-16/VGG-19),并在当年的ImageNet Challenge上作为分类任务第二名、定位(Localization)任务第一名的基础网络出现。
VGG的特点
VGG与当时其他卷积神经网络不同,不采用感受野大的卷积核(如:7×7,5×5),反而采用感受野小的卷积核(3×3)。关于这样做的好处有如下两点:减少网络参数量;由于参数量被大幅减小,于是可以用多个感受野小的卷积层替换掉之前一个感受野大的卷积层,从而增加网络的非线性表达能力。
代码示例
import torch
from torch import nn
from d2l import torch as d2l
def vgg_block(num_convs, in_channels, out_channels):layers = []for _ in range(num_convs):layers.append(nn.Conv2d(in_channels, out_channels, kernel_size = 3, padding=1))leyers.append(nn.ReLU())in_channels = out_channelslayers.append(nn.MaxPool2d(kernel_size=2, stride=2))return nn.Sequential(*layers)
查看全文
99%的人还看了
相似问题
- CNN卷积神经网络Python实现
- 竞赛 题目:基于机器视觉opencv的手势检测 手势识别 算法 - 深度学习 卷积神经网络 opencv python
- 时序预测 | Python实现ConvLSTM卷积长短期记忆神经网络股票价格预测(Conv1D-LSTM)
- 卷积神经网络(CNN)天气识别
- FSOD论文阅读 - 基于卷积和注意力机制的小样本目标检测
- YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头
- 人工智能-卷积神经网络之多输入多输出通道
- 多维时序 | MATLAB实现TCN-selfAttention自注意力机制结合时间卷积神经网络多变量时间序列预测
- 基于轻量级卷积神经网络CNN开发构建打架斗殴识别分析系统
- 利用梯度上升可视化卷积核:基于torch实现
猜你感兴趣
版权申明
本文"卷积神经网络的发展历史-VGG":http://eshow365.cn/6-17195-0.html 内容来自互联网,请自行判断内容的正确性。如有侵权请联系我们,立即删除!