当前位置:首页 > 编程笔记 > 正文
已解决

时序预测 | MATLAB实现EMD-iCHOA+GRU基于经验模态分解-改进黑猩猩算法优化门控循环单元的时间序列预测

来自网友在路上 169869提问 提问时间:2023-10-07 00:14:19阅读次数: 69

最佳答案 问答题库698位专家为你答疑解惑

时序预测 | MATLAB实现EMD-iCHOA+GRU基于经验模态分解-改进黑猩猩算法优化门控循环单元的时间序列预测

目录

    • 时序预测 | MATLAB实现EMD-iCHOA+GRU基于经验模态分解-改进黑猩猩算法优化门控循环单元的时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

基本介绍

EMD-iCHOA+GRU基于经验模态分解-改进黑猩猩算法优化门控循环单元的时间序列预测
1.时间序列单列输入,如需多特征输入需额外付费。经过EMD分解后利用优化后的GRU对每个分量进行预测最后集成相加,算法新颖~EMD也可以换成其他分解方法,GRU也可以换成BiLSTM等其他预测模型。
2.iCHOA改进的黑猩猩优化算法改进点如下:
[1]利用Sobol序列初始化种群,增加种群的随机性和多样性,为算法全局寻优奠定基础;
[2]其次,引入基于凸透镜成像的反向学习策略,将其应用到当前最优个体上产生新的个体,提高算法的收敛精度和速度;
[3]最后,将水波动态自适应因子添加到攻击者位置更新处,增强算法跳出局部最优的能力。
3.直接替换Excel数据即可用,注释清晰,适合新手小白
4.附赠测试数据,输入格式如图3所示,可直接运行

程序设计

  • 完整程序和数据下载方式私信博主回复:MATLAB实现EMD-iCHOA+GRU基于经验模态分解-改进黑猩猩算法优化门控循环单元的时间序列预测
%%  参数设置
%% 训练模型
%% 模型预测%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
function [IW,B,LW,TF,TYPE] = elmtrain(P,T,N,TF,TYPE)
% ELMTRAIN Create and Train a Extreme Learning Machine
% Syntax
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,N,TF,TYPE)
% Description
% Input
% P   - Input Matrix of Training Set  (R*Q)
% T   - Output Matrix of Training Set (S*Q)
% N   - Number of Hidden Neurons (default = Q)
% TF  - Transfer Function:
%       'sig' for Sigmoidal function (default)
%       'sin' for Sine function
%       'hardlim' for Hardlim function
% TYPE - Regression (0,default) or Classification (1)
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% Output
% IW  - Input Weight Matrix (N*R)
% B   - Bias Matrix  (N*1)
% LW  - Layer Weight Matrix (N*S)
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% Example
% Regression:
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,'sig',0)
% Y = elmtrain(P,IW,B,LW,TF,TYPE)
% Classification
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,'sig',1)
% Y = elmtrain(P,IW,B,LW,TF,TYPE)
% See also ELMPREDICT
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 2error('ELM:Arguments','Not enough input arguments.');
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 3N = size(P,2);
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 4TF = 'sig';
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 5TYPE = 0;
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if size(P,2) ~= size(T,2)error('ELM:Arguments','The columns of P and T must be same.');
end
[R,Q] = size(P);
if TYPE  == 1T  = ind2vec(T);
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[S,Q] = size(T);
% Randomly Generate the Input Weight Matrix
IW = rand(N,R) * 2 - 1;
% Randomly Generate the Bias Matrix
B = rand(N,1);
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
BiasMatrix = repmat(B,1,Q);
% Calculate the Layer Output Matrix H
tempH = IW * P + BiasMatrix;
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
switch TFcase 'sig'H = 1 ./ (1 + exp(-tempH));case 'sin'H = sin(tempH);case 'hardlim'H = hardlim(tempH);
end
% Calculate the Output Weight Matrix
LW = pinv(H') * T';
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

参考资料

[1] https://blog.csdn.net/article/details/126072792?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/article/details/126044265?spm=1001.2014.3001.5502

查看全文

99%的人还看了

猜你感兴趣

版权申明

本文"时序预测 | MATLAB实现EMD-iCHOA+GRU基于经验模态分解-改进黑猩猩算法优化门控循环单元的时间序列预测":http://eshow365.cn/6-16534-0.html 内容来自互联网,请自行判断内容的正确性。如有侵权请联系我们,立即删除!