循环神经网络——上篇【深度学习】【PyTorch】【d2l】
最佳答案 问答题库698位专家为你答疑解惑
文章目录
- 6、循环神经网络
- 6.1、序列模型
- 6.1.1、序列模型
- 6.1.2、条件概率建模
- 6.1.2、代码实现
- 6.2、文本预处理
- 6.2.1、理论部分
- 6.2.2、代码实现
- 6.3、语言模型和数据集
6、循环神经网络
6.1、序列模型
6.1.1、序列模型
序列模型主要用于处理具有时序结构的数据, **时序数据是连续的,**随着时间的推移,如电影评分、电影奖项、电影导演演员等。
p ( x ) = p ( x 1 ) ⋅ p ( x 2 ∣ x 1 ) ⋅ p ( x 3 ∣ x 2 , x 1 ) ⋅ . . . ⋅ p ( x T ∣ x 1 , x 2 , . . . , x T − 1 ) p(x)=p(x_1)·p(x_2|x_1)·p(x_3|x_2,x_1)·...·p(x_T|x_1,x_2,...,x_{T-1}) p(x)=p(x1)⋅p(x2∣x1)⋅p(x3∣x2,x1)⋅...⋅p(xT∣x1,x2,...,xT−1)
反序推测
p ( x ) = p ( x T ) ⋅ p ( x T − 1 ∣ x T ) ⋅ p ( x T − 2 ∣ x T − 1 , x T ) ⋅ . . . ⋅ p ( x 1 ∣ x 2 , x 2 , . . . , x T ) p(x)=p(x_T)·p(x_{T-1}|x_{T})·p(x_{T-2}|x_{T-1},x_{T})·...·p(x_1|x_2,x_2,...,x_{T}) p(x)=p(xT)⋅p(xT−1∣xT)⋅p(xT−2∣xT−1,xT)⋅...⋅p(x1∣x2,x2,...,xT)
从未来去推前面发生什么,物理上不一定可行。
6.1.2、条件概率建模
公式
p ( x t ∣ x 1 , . . . , x t − 1 ) = p ( x t ∣ f ( x 1 , . . . , x t − 1 ) ) p(x_t|x_1,...,x_{t-1}) = p(x_t|f(x_1,...,x_{t-1})) p(xt∣x1,...,xt−1)=p(xt∣f(x1,...,xt−1))
对过去的数据建模,使用自身过去数据去预测自身未来数据,称为自回归模型。
建模方案
1)马尔科夫假设
相当长的序列 x t − 1 , . . . , x 2 , x 1 x_{t-1},...,x_2,x_1 xt−1,...,x2,x1是不必要的,满足 τ τ τ长度的序列 x t − τ , x t − τ − 1 . . . , x t − 1 x_{t-τ},x_{t-τ-1}...,x_{t-1} xt−τ,xt−τ−1...,xt−1足够。
2)潜变量模型
引入潜变量 h t h_t ht表示过去的信息。
h t = f ( x 1 , . . . , x t − 1 ) h_t = f(x_1,...,x_{t-1}) ht=f(x1,...,xt−1)
p ( x t ∣ x 1 , . . . , x t − 1 ) = p ( x t ∣ f ( x 1 , . . . , x t − 1 ) ) p(x_t|x_1,...,x_{t-1}) = p(x_t|f(x_1,...,x_{t-1})) p(xt∣x1,...,xt−1)=p(xt∣f(x1,...,xt−1))
因此,
x t = p ( x t ∣ h t ) x_t =p(x_t|h_t) xt=p(xt∣ht)
6.1.2、代码实现
生成类似正弦变换的样本数据
%matplotlib inline
import torch
from torch import nn
from d2l import torch as d2lT = 1000 # 总共产生1000个点
time = torch.arange(1, T + 1, dtype=torch.float32)
x = torch.sin(0.01 * time) + torch.normal(0, 0.2, (T,))
d2l.plot(time, [x], 'time', 'x', xlim=[1, 1000], figsize=(6, 3))
将这个序列转换为模型的特征-标签对(feature-label)
若没有足够的历史记录来描述前τ个数据样本。 一个简单的解决办法是:如果拥有足够长的序列就丢弃这几项; 另一个方法是用零填充序列。
tau = 4
features = torch.zeros((T - tau, tau))
for i in range(tau):features[:, i] = x[i: T - tau + i]
labels = x[tau:].reshape((-1, 1))batch_size, n_train = 16, 600
# 只有前n_train个样本用于训练
train_iter = d2l.load_array((features[:n_train], labels[:n_train]),batch_size, is_train=True)
定义模型
# 初始化网络权重的函数
def init_weights(m):if type(m) == nn.Linear:nn.init.xavier_uniform_(m.weight)# 一个简单的多层感知机
def get_net():net = nn.Sequential(nn.Linear(4, 10),nn.ReLU(),nn.Linear(10, 1))net.apply(init_weights)return net# 平方损失。注意:MSELoss计算平方误差时不带系数1/2
loss = nn.MSELoss(reduction='none')
训练
def train(net, train_iter, loss, epochs, lr):trainer = torch.optim.Adam(net.parameters(), lr)for epoch in range(epochs):for X, y in train_iter:trainer.zero_grad()l = loss(net(X), y)l.sum().backward()trainer.step()print(f'epoch {epoch + 1}, 'f'loss: {d2l.evaluate_loss(net, train_iter, loss):f}')net = get_net()
train(net, train_iter, loss, 5, 0.01)
epoch 1, loss: 0.063649 epoch 2, loss: 0.060103 epoch 3, loss: 0.056767 epoch 4, loss: 0.056202 epoch 5, loss: 0.054945
预测
onestep_preds = net(features)
d2l.plot([time, time[tau:]],[x.detach().numpy(), onestep_preds.detach().numpy()], 'time','x', legend=['data', '1-step preds'], xlim=[1, 1000],figsize=(6, 3))
6.2、文本预处理
6.2.1、理论部分
解析文本|预处理步骤:
- 将文本作为字符串加载到内存中;
- 将字符串拆分为词元(如单词和字符);
- 建立一个词表,将拆分的词元映射到数字索引;
- 将文本转换为数字索引序列,方便模型操作。
6.2.2、代码实现
import collections
import re
from d2l import torch as d2l
步骤一:读取数据集
这里为了简化,忽略了标点符号和字母大写。
#@save
d2l.DATA_HUB['time_machine'] = (d2l.DATA_URL + 'timemachine.txt','090b5e7e70c295757f55df93cb0a180b9691891a')def read_time_machine(): #@save"""将时间机器数据集加载到文本行的列表中"""with open(d2l.download('time_machine'), 'r') as f:lines = f.readlines()return [re.sub('[^A-Za-z]+', ' ', line).strip().lower() for line in lines]lines = read_time_machine()
print(f'# 文本总行数: {len(lines)}')
print(lines[0])
print(lines[10])
Downloading ..\data\timemachine.txt from http://d2l-data.s3-accelerate.amazonaws.com/timemachine.txt... # 文本总行数: 3221 the time machine by h g wells twinkled and his usually pale face was flushed and animated the
步骤二:拆分词元
def tokenize(lines, token='word'): #@save"""将文本行拆分为单词或字符词元"""if token == 'word':return [line.split() for line in lines]elif token == 'char':return [list(line) for line in lines]else:print('错误:未知词元类型:' + token)tokens = tokenize(lines)
for i in range(11):print(tokens[i])
['the', 'time', 'machine', 'by', 'h', 'g', 'wells'] [] [] [] [] ['i'] [] [] ['the', 'time', 'traveller', 'for', 'so', 'it', 'will', 'be', 'convenient', 'to', 'speak', 'of', 'him'] ['was', 'expounding', 'a', 'recondite', 'matter', 'to', 'us', 'his', 'grey', 'eyes', 'shone', 'and'] ['twinkled', 'and', 'his', 'usually', 'pale', 'face', 'was', 'flushed', 'and', 'animated', 'the']
步骤三&四:建立词表&转换为数字序列
class Vocab: #@save"""文本词表"""def __init__(self, tokens=None, min_freq=0, reserved_tokens=None):if tokens is None:tokens = []if reserved_tokens is None:reserved_tokens = []# 按出现频率排序counter = count_corpus(tokens)self._token_freqs = sorted(counter.items(), key=lambda x: x[1],reverse=True)# 未知词元的索引为0self.idx_to_token = ['<unk>'] + reserved_tokensself.token_to_idx = {token: idxfor idx, token in enumerate(self.idx_to_token)}for token, freq in self._token_freqs:if freq < min_freq:breakif token not in self.token_to_idx:self.idx_to_token.append(token)self.token_to_idx[token] = len(self.idx_to_token) - 1def __len__(self):return len(self.idx_to_token)def __getitem__(self, tokens):if not isinstance(tokens, (list, tuple)):return self.token_to_idx.get(tokens, self.unk)return [self.__getitem__(token) for token in tokens]def to_tokens(self, indices):if not isinstance(indices, (list, tuple)):return self.idx_to_token[indices]return [self.idx_to_token[index] for index in indices]@propertydef unk(self): # 未知词元的索引为0return 0@propertydef token_freqs(self):return self._token_freqsdef count_corpus(tokens): #@save"""统计词元的频率"""# 这里的tokens是1D列表或2D列表if len(tokens) == 0 or isinstance(tokens[0], list):# 将词元列表展平成一个列表tokens = [token for line in tokens for token in line]return collections.Counter(tokens)
打印前10高频词及其索引
vocab = Vocab(tokens) print(list(vocab.token_to_idx.items())[:10])
[('<unk>', 0), ('the', 1), ('i', 2), ('and', 3), ('of', 4), ('a', 5), ('to', 6), ('was', 7), ('in', 8), ('that', 9)]
将每行转换成一个数字索引列表(前10个词元列表)
for i in [0, 10]:print('文本:', tokens[i])print('索引:', vocab[tokens[i]])
功能整合
为了简化,使用字符(而不是单词)实现文本词元化;
时光机器数据集中的每个文本行不一定是一个句子或一个段落,还可能是一个单词,因此返回的
corpus
仅处理为单个列表,而不是使用多词元列表构成的一个列表。
def load_corpus_time_machine(max_tokens=-1): #@save"""返回时光机器数据集的词元索引列表和词表"""lines = read_time_machine()tokens = tokenize(lines, 'char')vocab = Vocab(tokens)# 因为时光机器数据集中的每个文本行不一定是一个句子或一个段落,# 所以将所有文本行展平到一个列表中corpus = [vocab[token] for line in tokens for token in line]if max_tokens > 0:corpus = corpus[:max_tokens]return corpus, vocabcorpus, vocab = load_corpus_time_machine()
len(corpus), len(vocab)
(170580, 28)
6.3、语言模型和数据集
(待补充)
99%的人还看了
相似问题
- 【Django-DRF用法】多年积累md笔记,第3篇:Django-DRF的序列化和反序列化详解
- 【Java 进阶篇】JavaScript JSON 语法入门:轻松理解数据的序列化和反序列化
- 【python学习】基础篇-常用模块-pickle模块:序列化和反序列化
- ZC序列理论学习及仿真
- 时间序列预测实战(十七)PyTorch实现LSTM-GRU模型长期预测并可视化结果(附代码+数据集+详细讲解)
- 代码随想录算法训练营第二十九天| 491 递增子序列 46 全排列
- 最长递增子序列
- 深入解析序列模型:全面阐释 RNN、LSTM 与 Seq2Seq 的秘密
- c#Nettonsoft.net库常用的方法json序列化反序列化
- 基于C#实现最长公共子序列
猜你感兴趣
版权申明
本文"循环神经网络——上篇【深度学习】【PyTorch】【d2l】":http://eshow365.cn/6-11524-0.html 内容来自互联网,请自行判断内容的正确性。如有侵权请联系我们,立即删除!
- 上一篇: MySQL常见面试题(一)
- 下一篇: 如何平滑升级 Nginx