当前位置:首页 > 编程笔记 > 正文
已解决

rust变量绑定、拷贝、转移、引用

来自网友在路上 157857提问 提问时间:2023-11-07 06:29:40阅读次数: 57

最佳答案 问答题库578位专家为你答疑解惑

目录

一,clone、copy

1,基本类型

2,类型的clone特征

3,显式声明结构体的clone特征

4,类型的copy特征

5,显式声明结构体的clone特征

5,变量和字面量的特征

6,特征总结

二,变量绑定

1,clone拷贝场景

2,copy拷贝场景

3,所有权转移场景

4,转移的永久性

三,引用

1,对常量的引用

2,对变量的不可变引用

3,对变量的可变引用

5,函数调用

四,引用总结

1,引用的生命周期

2,对字面量的引用

3,对普通变量的引用

4,对引用变量的引用

5,对同一变量的引用

6,链式引用


一,clone、copy

1,基本类型

rust基本类型包括:

  • 所有整数类型,比如 u32
  • 布尔类型,bool,它的值是 true 和 false
  • 所有浮点数类型,比如 f64
  • 字符类型,char

2,类型的clone特征

拥有clone特征的类型:

  • 基本类型
  • String
  • 容器
  • 显式声明clone特征的结构体

没有clone特征的类型:

  • 没有显式声明clone特征的结构体(结构体默认)

递归决定是否有clone特征的类型:

  • 元组,当且仅当其包含的类型都有clone特征的情况下,其自身有clone特征。

3,显式声明结构体的clone特征

前提条件:当且仅当结构体中的成员都具有clone特征的情况下,可以显式声明clone特征。

#[derive(Clone)]
struct S{}#[derive(Clone)]
struct P{a:i32,b:S,
}

4,类型的copy特征

拥有copy特征的类型:

  • 基本类型
  • 显式声明clone特征的结构体

没有copy特征的类型:

  • String
  • 容器
  • 没有显式声明clone特征的结构体(结构体默认)

递归决定是否有copy特征的类型:

  • 元组,当且仅当其包含的类型都有copy特征的情况下,其自身有copy特征。

5,显式声明结构体的clone特征

前提条件:结构体具有clone特征

#[derive(Clone,Copy)]
struct P{a:i32,
}fn main() {let x:P=P{a:5};let y=x;assert_eq!(x.a,5);
}

5,变量和字面量的特征

字面量会自动推导出类型,所以变量和字面量都有唯一确定的类型。

变量和字面量是否具有clone和copy特征,完全取决于其类型是否具有。

6,特征总结

所有类型可以分为3类:

没有clone和copy特征,有clone没有copy特征,有clone和copy特征。

二,变量绑定

1,clone拷贝场景

对于有clone特征的变量或字面量,可以调用clone函数进行拷贝而不转移所有权。

#[derive(Clone)]
struct P{a:i32,
}fn main() {let x:P=P{a:5};let y=x.clone();assert_eq!(x.a,5);
}

2,copy拷贝场景

如果let绑定语句的等号右边是一个有copy特征的变量或字面量,那么这是一个拷贝行为。

    let x = 5;let xx = x;assert_eq!(5, x);assert_eq!(6, xx+1);

3,所有权转移场景

如果let绑定语句的等号右边是一个没有copy特征的变量或字面量,那么这是一个所有权转移的行为。

错误代码:

    let x = vec![1,2,3];assert_eq!(x[0],1);let y=x;assert_eq!(x[0],1); // 错误

错误原因:y转移走了所有权,不能再使用x

4,转移的永久性

错误代码:

struct P{a:i32,
}
fn main() {let mut x:P=P{a:5};{let y= x;}x.a=6;println!("end");
}

错误原因:y转移了x的所有权之后,x就再也不能用了,即使y的生命周期结束了也一样。

三,引用

1,对常量的引用

fn main() {let x:P=P{a:6};let y= & x;assert_eq!(x.a,6);assert_eq!(y.a,6);assert_eq!((*y).a,6);println!("end");
}

常量只有可读性,原变量x和引用变量y都持有读的能力。

这里y可以直接用,也可以先解引用再用。

2,对变量的不可变引用

正确代码:

struct P{a:i32,
}
fn main() {let mut x:P=P{a:6};let y= &x;assert_eq!(x.a,6);assert_eq!(y.a,6);assert_eq!((*y).a,6);x.a=5;assert_eq!(x.a,5);println!("end");
}

变量x持有读写能力,不可变的引用y只有读能力。

错误代码:

struct P{a:i32,
}
fn main() {let mut x:P=P{a:6};let y= &x;x.a=5;assert_eq!(y.a,5);println!("end");
}

错误原因:在y的读行为结束之前,x不能执行写行为,否则会造成冲突

同一个变量可以引用多次,也可以对引用变量再进行引用:

struct P{a:i32,
}
fn main() {let mut x:P=P{a:6};let y= &x;let z=&x;let z2=&z;let z3=&z2;let z4=&z3;assert_eq!(x.a,6);assert_eq!(y.a,6);assert_eq!(z.a,6);assert_eq!(z4.a,6);assert_eq!((*z4).a,6);assert_eq!((**z4).a,6);assert_eq!((***z4).a,6);assert_eq!((****z4).a,6);println!("end");
}

这里的z4可以直接读成员,也可以解引用若干次再使用。

3,对变量的可变引用

正确代码:

struct P{a:i32,
}
fn main() {let mut x:P=P{a:6};let y= &mut x;assert_eq!(y.a,6);y.a=5;assert_eq!(x.a,5);println!("end");
}

错误代码:

struct P{a:i32,
}
fn main() {let mut x:P=P{a:6};let y= &mut x;assert_eq!(x.a,6);assert_eq!(y.a,6);    println!("end");
}

错误原因:y的读写行为结束之前,x不能执行读行为,否则会造成冲突

可变引用和不可变引用不能同时存在,否则会造成冲突。

5,函数调用

错误代码:

fn fun(x:Vec<i32>)->i32{x[0]+1
}fn main() {let x = vec![1,2,3];assert_eq!(fun(x),2);assert_eq!(x.len(), 3);println!("end");
}

错误原因:函数调用时转移走了所有权。

正确代码:

fn fun(x:&Vec<i32>)->i32{x[0]+1
}fn main() {let x = vec![1,2,3];assert_eq!(fun(&x),2);assert_eq!(x.len(), 3);println!("end");
}

实现方式:函数入参改成引用类型,传参时也要改成引用。

四,引用总结

1,引用的生命周期

(1)一个引用变量的声明周期只到它的最后一次读写为止

(2)如果声明了引用之后没有读写,那么生命周期直接结束,但是这和直接删除这一句不一样,因为声明引用这一行相当于一次读操作

(3)如果一个引用变量y被z引用了,且z最后一次读写比y的最后一次读写更晚,那么y的生命周期延长到z的最后一次读写。

PS:如果声明了z是对y的引用之后没有读写,那么声明的这一句就是z的最后一次读操作,这也可能延长y的声明周期。

讨论引用规则时我们默认只讨论一个生命周期之内的引用

2,对字面量的引用

对字面量的引用,无论是可变引用还有不可变引用,其实都不是引用,而是copy拷贝,讨论引用规则时我们默认不把对字面量的引用这个当做引用

3,对普通变量的引用

对于普通变量,有mut的是可变变量,没有mut的是不可变变量(常量)。

可变变量可以加可变引用,也可以加不可变引用,不可变变量只能加不可变引用

4,对引用变量的引用

无论是可变引用变量还是不可变引用变量,都和普通变量一样,可能是可变变量也可能是不可能变量

对引用变量加引用的规则,和对普通变量一致。

5,对同一变量的引用

对不可变变量不能加可变引用,可以加多个不可变引用。

对可变变量可以加唯一的可变引用,也可以加多个不可变引用。

即,可变引用存在的情况下,只能有一个引用。

6,链式引用

以y是对x的引用,z是对y的引用为例,更长的链的情况应该规则类似。

y的声明周期参考上文“引用的生命周期”。

在所有情况下,z对x的读写能力都和y对x的读写能力相同,因为z一直持有对y的读能力

(1)x是不可变变量

x和y 一直有读能力,没有写能力

(2)x是可变变量

在y的最后一次读操作或写操作之前,x没有读写能力,之后,x有读写能力

y的能力在声明周期内不变,有读能力,有没有写能力取决于是可变引用还是不可变引用。

查看全文

99%的人还看了

猜你感兴趣

版权申明

本文"rust变量绑定、拷贝、转移、引用":http://eshow365.cn/6-34307-0.html 内容来自互联网,请自行判断内容的正确性。如有侵权请联系我们,立即删除!