当前位置:首页 > 编程笔记 > 正文
已解决

TRS 2023 | Spurs in Millimeter-Wave FMCW Radar System-on-Chip

来自网友在路上 160860提问 提问时间:2023-10-31 17:41:04阅读次数: 60

最佳答案 问答题库608位专家为你答疑解惑

原始笔记链接: https://mp.weixin.qq.com/s?__biz=Mzg4MjgxMjgyMg==&mid=2247486779&idx=1&sn=c75171844595150abc48d2dd59e7255f&chksm=cf51bfc2f82636d4e3f9c8526d0f25df1bea5496d9945d1e963961fea8c8fd630e7670b99afb#rd
↑ \uparrow 打开上述链接即可阅读全文

TRS 2023 | Spurs in Millimeter-Wave FMCW Radar System-on-Chip

毫米波雷达论文阅读: TRS 2023 | Spurs in Millimeter-Wave FMCW Radar System-on-Chip

图 0

论文链接:https://ieeexplore.ieee.org/document/10097751

0 Abstract

  • 研究内容

    • present a nonlinear system model to evaluate the impact of circuit nonlinearities on spurs in millimeter-wave FMCW radar system-on-chips

    • The developed model includes:

      ✅ Harmonics of the frequency multiplier (频率乘法器的谐波)

      ✅ Nonlinearity of the power amplifier (PA) and low-noise amplifier (LNA) (功率放大器和低噪声放大器的非线性度)

      ✅ Switching operation of the receiver (RX) mixer (接收机混频器的切换操作)

      ✅ Limited bandwidth of the PA, LNA, transmitter (TX) and RX antennas (PA, LNA, 发射接收天线的有效带宽)

      ✅ TX-to-RX leakage (发射接收泄漏)

  • 意义

    • The nonlinear model can be used to derive frequency and amplitude of spurs in the radar IF spectrum
    • without time-consuming simulations
  • Insights : The major insights about the impact of different nonlinearities and their interactions

    • Harmonics of the frequency multiplier appear as spurs in the IF spectrum
    • PA can be driven in its nonlinear region to mitigate the harmonics generated by the frequency multiplier
    • Bandwidth of the TX and RX systems should be limited to attenuate the undesired harmonics(衰减不希望出现的谐波)
    • Interaction between the TX-to-RX leakage signal and the LNA nonlinearity can lead to spurs close to the target echo in the IF spectrum

1 Introduction

  • 背景: Millimeter-wave high-resolution radars的重要性

    • Automotive sensors (ADAS, autonomous driving)
    • Medical imaging, vital signs monitoring, gesture recognition
    • IoT sensors, smart buildings, industrial transport, robotics
  • 背景: mm-wave radar SoC 的最新进展

    • Implemented in CMOS, SOI, SiGe processes
    • Operating at 60 GHz, 77 GHz, 76-81 GHz, 140 GHz, 200-300 GHz
    • Achieving high range resolution by using higher mm-wave bands and wide bandwidth
    • Achieving high angular resolution using MIMO architecture
  • 问题:广泛使用的FMCW雷达系统存在Spurs

    • Signal generation can be challenging due to requirements on:

      ✅ Bandwidth

      ✅ Phase noise

      ✅ Jitter

      ✅ Spurs

    • 前三种已经有解决方案:Nonlinear effects such as chirp nonlinearity can be mitigated using error correction or calibration techniques

    • Spurs: Spurs are undesired signals in the radar IF spectrum that can be generated by

      ❗ Harmonics of the frequency multiplier (因为low harmonic rejection ration(HRR) of the frequency multiplier)

      ❗ Nonlinearities of the power amplifier (PA) and low-noise amplifier (LNA) (通过 affect the harmonics level)

      ❗ TX-to-RX leakage (通过 affect the harmonics level)

    • 结论:一个全面的非线性模型对于推导 对 FMCW雷达电路组件的有效电路和系统设计 的要求 至关重要

  • This paper : presents a nonlinear system model for mm-wave FMCW radars

    • includes several important effects

      ✅ harmonics of the frequency multiplier

      ✅ nonlinearity of the PA, LNA

      ✅ the switching operation of the RX mixer

      ✅ the limited bandwidth of the TX and RX

      ✅ the stop-band rejections of the TX, RX, and IF filter

      ✅ the TX-to-RX leakage

    • To evaluate circuit nonlinearities and their interactions

    • 作用:

      ✅ The developed model can be used to estimate the frequency and amplitude of spurs in the radar IF spectrum

      ✅ without the need for time-consuming system and circuit simulations

2 Non-Linear System Model of FMCW Radar

2.1 Principles of FMCW Radar

图 1

  • Architecture of a mm-wave FMCW radar system:

    • Reference chirp signal is generated at lower frequency (e.g. 10 GHz)

    • Then Frequency multiplier transforms it to mm-wave band

      好处 :useful to achieve lower phase noise in the reference signal

    • Multiplier output signal is amplified by PA (功率放大器) and transmitted

    • Echo signal is received, amplified by LNA (低噪声放大器) and mixed with replica of multiplier output

    • Mixer output signal passes through IF bandpass filter (BPF)

  • Reference chirp signal

    • Linear time-dependent frequency:

      f r e f ( t ) = f 0 + S t 0 ≤ t ≤ T c f_{\mathrm{ref}}(t)=f_0+S t \quad 0 \leq t \leq T_c fref(t)=f0+St0tTc

      T c T_c Tc: chirp period

    • Instantaneous phase:

      Φ r e f ( t ) = 2 π ∫ f r e f ( t ) d t = Φ 0 + 2 π f 0 t + π S t 2 \Phi_{\mathrm{ref}}(t)=2 \pi \int f_{\mathrm{ref}}(t) d t=\Phi_0+2 \pi f_0 t+\pi S t^2 Φref(t)=2πfref(t)dt=Φ0+2πf0t+πSt2

  • Frequency multiplier ideally generates

    • Chirp signal with frequency N f r e f ( t ) Nf_{ref}(t) Nfref(t)
    • Bandwidth of N B NB NB
    • Slope of N S NS NS
    • Period of T c T_c Tc
  • Received signal related to transmitted signal

    • x R X ( t ) = G R x T X ( t − τ R ) x_{\mathrm{RX}}(t)=G_R x_{\mathrm{TX}}\left(t-\tau_R\right) xRX(t)=GRxTX(tτR),
    • GR: attenuation factor – G R = ( G A , T X G A , R X L s y s σ λ 2 ( 4 π ) 3 R 4 ) 1 2 G_R=\left(\frac{G_{\mathrm{A}, \mathrm{TX}} G_{\mathrm{A}, \mathrm{RX}} L_{\mathrm{sys}} \sigma \lambda^2}{(4 \pi)^3 R^4}\right)^{\frac{1}{2}} GR=((4π)3R4GA,TXGA,RXLsysσλ2)21
    • τ R \tau_R τR: time-of-flight – τ R 0 = 2 R 0 c \tau_{R_0}=\frac{2 R_0}{c} τR0=c2R0
  • Mixer + BPF output signal

    • instantaneous phase: Φ I F ( t ) = N Φ r e f ( t ) − N Φ r e f ( t − τ R ( t ) ) \Phi_{\mathrm{IF}}(t)=N \Phi_{\mathrm{ref}}(t)-N \Phi_{\mathrm{ref}}\left(t-\tau_R(t)\right) ΦIF(t)=NΦref(t)NΦref(tτR(t))

    • ⇒ \Rightarrow 大致表示一个正弦信号, frequency:

      f I F = ( N S ) τ R 0 + f D = ( 2 N S c ) R 0 + ( 2 N f 0 c ) v f_{\mathrm{IF}}=(N S) \tau_{R_0}+f_D=\left(\frac{2 N S}{c}\right) R_0+\left(\frac{2 N f_0}{c}\right) v fIF=(NS)τR0+fD=(c2NS)R0+(c2Nf0)v

    • 2D FFT to get Range and Velocity

2.2 FMCW Radar Nonlinear Model

A nonlinear system model which properly captures the circuit nonlinearities and interactions of different nonlinear effects with each other can be very valuable for efficient design of a mm-wave FMCW radar SoC.

在这里插入图片描述

2.2.1 Important nonlinear effects in FMCW radar system model:
  • Output harmonics of frequency multiplier

    • Neglect spurs from reference circuits like PLL or DDS

    • Harmonics level depends on:

      ✅ Multiplier circuit structure

      ✅ Frequency band

      ✅ Chirp bandwidth

      ✅ Quality factor of passive components

      ✅ IC process features

    • The output of the frequency multiplier

      x o u t , M U L ( t ) = ∑ k = 1 ∞ a k cos ⁡ [ k Φ r e f ( t ) ] x_{\mathrm{out}, \mathrm{MUL}}(t)=\sum_{k=1}^{\infty} a_k \cos \left[k \Phi_{\mathrm{ref}}(t)\right] xout,MUL(t)=k=1akcos[kΦref(t)]

  • Nonlinearity of PA

    • Can change harmonics’ relative amplitude
    • Especially at low supply voltages
  • Bandwidth of PA and TX

    • Bandwidth of PA: how output harmonics of the frequency multiplier reach to the TX antenna

      ✅ 受负载阻抗(用来最大化输出功率/efficiency)的限制

    • Bandwidth of Tx

      ✅ three possible scenarios: 在这里插入图片描述

      ✅ 本文:假设为情况(b)

    • 谐波 k k k的相对衰减系数:

      A T X , k = ∣ H T X ( j k ω 0 ) ∣ ∣ H T X ( j N ω 0 ) ∣ A_{\mathrm{TX}, \mathrm{k}}=\frac{\left|H_{\mathrm{TX}}\left(j k \omega_0\right)\right|}{\left|H_{\mathrm{TX}}\left(j N \omega_0\right)\right|} ATX,k=HTX(jNω0)HTX(jkω0),

      ✅ 决定因素:信号分量之间的频率差、PA电路中使用的片上无源元件的质量因子,以及TX天线带宽。

  • TX-to-RX leakage signal

    • 产生原因 :天线之间的耦合 + 芯片基板的耦合

    • 后果 :desensitizes the RX circuits (特别是LNA) ⇒ \Rightarrow 掩盖目标

    • 解决 :目前的leakage cancellation已经可以做到 30~50dB

      ✅ still limits system performance

    • The received signal: x R X ( t ) = G R x T X ( t − τ R ) + G L x T X ( t − τ L ) x_{\mathrm{RX}}(t)=G_R x_{\mathrm{TX}}\left(t-\tau_R\right)+G_L x_{\mathrm{TX}}\left(t-\tau_L\right) xRX(t)=GRxTX(tτR)+GLxTX(tτL),

      ✅ leakage的后果can be different for short and long target ranges

  • Bandwidth of LNA and RX

    • 意义:决定了能够到达混频器的谐波信号

    • LNA bandwidth:

      ✅ modeld by two transfer functions – H in, LNA  ( j ω ) H_{\text {in, LNA }}(j \omega) Hin, LNA () and H out,LNA  ( j ω ) H_{\text {out,LNA }}(j \omega) Hout,LNA ()

      ✅ 分别对应 输入和输出匹配网络的 frequency responses

      ✅ 带宽限制因素: input matching network (负责提供optimum noise matching)

    • RX bandwidth:

      ✅ 仍使用上图(b) (the same as for the TX)

    • The relative attenuation of the harmonic k k k:

      A R X , k = ∣ H R X ( j k ω 0 ) ∣ ∣ H R X ( j N ω 0 ) ∣ A_{\mathrm{RX}, \mathrm{k}}=\frac{\left|H_{\mathrm{RX}}\left(j k \omega_0\right)\right|}{\left|H_{\mathrm{RX}}\left(j N \omega_0\right)\right|} ARX,k=HRX(jNω0)HRX(jkω0).

  • Switching operation of RX mixer

    • Generates intermodulation distortion (互调失真, IMD)
    • Mixes 参考信号和LNA输出中的不同谐波 ⇒ \Rightarrow 在IF上生成spurs
  • Bandwidth and attenuation of IF filter

    • 通带纹波 的影响
    • Fig. 3(a)的情况: distort the chirp signal ⇒ \Rightarrow undesired amplitude and phase modulations
2.2.2 Model Limitations

存在Limitations的原因

  • 模型考虑了 Most important effects for accurate radar performance evaluation
  • Higher order imperfections excluded for clarity
  • Apply approximations to keep model simple yet insightful

Limitations

  • Frequency multiplier

    • Can have large amplitude variations of fundamentals/harmonics across bandwidth
    • 此时,不能用 constant HRR (harmonic rejection ratio) 进行描述
    • 可使用 average/worst-case HRR
  • Largest harmonics of multiplier

    • May not be adjacent harmonics N±1
    • Attenuated by PA, LNA, TX/RX antennas
  • PA/LNA nonlinearity

    • Can significantly change across bandwidth
    • Frequency-dependent P 1 d B P_{1dB} P1dB makes analysis intractable
    • 解决:Use average P1dB for accuracy
    • 接下来的分析会假设 leakage does not saturate LNA
  • Reference signal spurs neglected

    • 本文仅Focus on spurs generated by radar
    • Reference信号中的Spurs: PLL spurs via mechanisms like quantization noise

3 Analysis of FMCW Radar System

利用FMCW雷达的非线性系统模型,研究以下信号的spectral contents:

  • TX输出
  • RX输入
  • IF
3.1 Analysis of Transmitter
  • Frequency multiplier output signal

    • x o u t , M U L ( t ) = a N [ cos ⁡ ( N Φ ) + k r e f cos ⁡ [ ( N ± 1 ) Φ ] ] x_{\mathrm{out}, \mathrm{MUL}}(t)=a_{\mathrm{N}}\left[\cos (N \Phi)+k_{\mathrm{ref}} \cos [(N \pm 1) \Phi]\right] xout,MUL(t)=aN[cos(NΦ)+krefcos[(N±1)Φ]],
    • Desired harmonic N
    • Two adjacent harmonics N±1
    • k r e f k_{\mathrm{ref}} kref related to HRR of multiplier
  • PA nonlinearity model output signal:

    • 3rd order polynomial: N Φ , 3 N Φ , ( N ± 1 ) Φ , ( N ± 2 ) Φ , ( N ± 3 ) Φ , ( 3 N ± 1 ) Φ , ( 3 N ± 2 ) Φ , ( 3 N ± 3 ) Φ N \Phi, 3 N \Phi,(N \pm 1) \Phi,(N \pm 2) \Phi,(N \pm 3) \Phi,(3 N \pm 1) \Phi,(3 N \pm 2) \Phi ,(3 N \pm 3) \Phi NΦ,3NΦ,(N±1)Φ,(N±2)Φ,(N±3)Φ,(3N±1)Φ,(3N±2)Φ,(3N±3)Φ,
    • Generates spectral regrowth
    • Output spectrum 3 times wider than input
  • TX

    • bandwidth allows N and N±1 harmonics
    • Relative attenuation of N±1: ATX
    • A T X , N ± 1 = A T X A_{\mathrm{TX}, \mathrm{N} \pm 1}=A_{\mathrm{TX}} ATX,N±1=ATX
    • (严格来说,TX system是一个动态非线性系统;本文,简化为一个 frequency-independent nonlinear model followed by a linear band-limited frequency response)
  • TX output signal derived using PA model

    • x T X ( t ) = a T X [ cos ⁡ ( N Φ ) + k T X cos ⁡ [ ( N ± 1 ) Φ ] ] x_{\mathrm{TX}}(t)=a_{\mathrm{TX}}\left[\cos (N \Phi)+k_{\mathrm{TX}} \cos [(N \pm 1) \Phi]\right] xTX(t)=aTX[cos(NΦ)+kTXcos[(N±1)Φ]],
    • 其中: a T X = α 1 , P A A i n + 3 4 ( 1 + 6 k r e f 2 ) α 3 , P A A i n 3 a_{\mathrm{TX}}=\alpha_{1, \mathrm{PA}} A_{\mathrm{in}}+\frac{3}{4}\left(1+6 k_{\mathrm{ref}}^2\right) \alpha_{3, \mathrm{PA}} A_{\mathrm{in}}^3 aTX=α1,PAAin+43(1+6kref2)α3,PAAin3, k T X = ( α 1 , P A A i n + 9 4 ( 1 + k r e f 2 ) α 3 , P A A i n 3 α 1 , P A A i n + 3 4 ( 1 + 6 k r e f 2 ) α 3 , P A A i n 3 ) A T X k r e f k_{\mathrm{TX}}=\left(\frac{\alpha_{1, \mathrm{PA}} A_{\mathrm{in}}+\frac{9}{4}\left(1+k_{\mathrm{ref}}^2\right) \alpha_{3, \mathrm{PA}} A_{\mathrm{in}}^3}{\alpha_{1, \mathrm{PA}} A_{\mathrm{in}}+\frac{3}{4}\left(1+6 k_{\mathrm{ref}}^2\right) \alpha_{3, \mathrm{PA}} A_{\mathrm{in}}^3}\right) A_{\mathrm{TX}} k_{\mathrm{ref}} kTX=(α1,PAAin+43(1+6kref2)α3,PAAin3α1,PAAin+49(1+kref2)α3,PAAin3)ATXkref.
    • Includes fundamental and harmonic components
    • Harmonics level k T X < k r e f k_{TX} < k_{ref} kTX<kref ⇒ \Rightarrow 意味着 TX输出时,谐波水平降低
    • 即:在非线性区域驱动PA,以减轻频率乘法器产生的谐波 + 提高PA效率 是有益的。
  • Key insights:

    • PA nonlinearity decreases harmonics level

      🚩 Beneficial to drive PA in nonlinear region

    • TX bandwidth should limit harmonics

      🚩 Filter can further suppress harmonics

3.2 Analysis of Receiver
  • Received signal :

    • Composed of target echo and TX-RX leakage
  • Without leakage signal :

    • LNA output signal derived using LNA nonlinearity model: x o u t , L N A ( t ) = a o u t , L N A [ cos ⁡ [ N Φ ( t − τ R ) ] + k R X cos ⁡ [ ( N ± 1 ) Φ ( t − τ R ) ] ] , \begin{aligned} & x_{\mathrm{out}, \mathrm{LNA}}(t) \\ & =a_{\mathrm{out}, \mathrm{LNA}}\left[\cos \left[N \Phi\left(t-\tau_R\right)\right]+k_{\mathrm{RX}} \cos \left[(N \pm 1) \Phi\left(t-\tau_R\right)\right]\right],\end{aligned} xout,LNA(t)=aout,LNA[cos[NΦ(tτR)]+kRXcos[(N±1)Φ(tτR)]],

    • IF signal
      x I F ( t ) = a I F [ cos ⁡ [ N Ψ 1 ( t ) ] + k r e f k R X cos ⁡ [ ( N ± 1 ) Ψ 1 ( t ) ] ] x_{\mathrm{IF}}(t)=a_{\mathrm{IF}}\left[\cos \left[N \Psi_1(t)\right]+k_{\mathrm{ref}} k_{\mathrm{RX}} \cos \left[(N \pm 1) \Psi_1(t)\right]\right] xIF(t)=aIF[cos[NΨ1(t)]+krefkRXcos[(N±1)Ψ1(t)]]

      Ψ 1 ( t ) = Φ ( t ) − Φ ( t − τ R ) \Psi_1(t)=\Phi(t)-\Phi\left(t-\tau_R\right) Ψ1(t)=Φ(t)Φ(tτR)

      🚩 结论1:

  • Key insights:

    • 结论1:中频处的激励电平低于参考信号的原始谐波电平 (IF spurs level < reference harmonics level)
      k I F ≈ ( 1 − 3 β P i n , L N A P l d B , L N A 1 − β P i n , L N A P l d B , L N A ) ( 1 − 3 β P i n , P A P l d B , P A 1 − β P i n , P A P l d B , P A ) A R X A T X k r e f 2 k_{\mathrm{IF}} \approx\left(\frac{1-3 \beta \frac{P_{\mathrm{in}, \mathrm{LNA}}}{P_{\mathrm{ldB}, \mathrm{LNA}}}}{1-\beta \frac{P_{\mathrm{in}, \mathrm{LNA}}}{P_{\mathrm{ldB}, \mathrm{LNA}}}}\right)\left(\frac{1-3 \beta \frac{P_{\mathrm{in}, \mathrm{PA}}}{P_{\mathrm{ldB}, \mathrm{PA}}}}{1-\beta \frac{P_{\mathrm{in}, \mathrm{PA}}}{P_{\mathrm{ldB}, \mathrm{PA}}}}\right) A_{\mathrm{RX}} A_{\mathrm{TX}} k_{\mathrm{ref}}^2 kIF(1βPldB,LNAPin,LNA13βPldB,LNAPin,LNA)(1βPldB,PAPin,PA13βPldB,PAPin,PA)ARXATXkref2.

    • 结论2:中频包含了三个频率分量: f I F 1 = N S τ R f_{\mathrm{IF} 1}=N S \tau_R fIF1=NSτR, f I F 2 = ( N + 1 ) S τ R f_{\mathrm{IF} 2}=(N+1) S \tau_R fIF2=(N+1)SτR, f I F 3 = ( N + 2 ) S τ R f_{\mathrm{IF} 3}=(N+2) S \tau_R fIF3=(N+2)SτR

      ✅ Spurs can cause overlap between IF spectra ⇒ \Rightarrow 降低雷达距离分辨率

图 2


  • With leakage signal:

    • 相当于LNA有两个输入: x in,LNA  ( t ) = x echo  ( t ) + x leak  ( t ) x_{\text {in,LNA }}(t)=x_{\text {echo }}(t)+x_{\text {leak }}(t) xin,LNA (t)=xecho (t)+xleak (t),
    • Leakage and LNA nonlinearity interaction generates extra spurs
    • LNA output signal includes spectral components related to leakage: x o u t , L N A ( t ) G R a T X [ C 1 cos ⁡ [ N Φ ( t − τ R ) ] + C 2 cos ⁡ [ ( N ± 1 ) Φ ( t − τ R ) ] + C 3 cos ⁡ [ N Φ ( t − τ L ) ] + C 4 cos ⁡ [ ( N ± 1 ) Φ ( t − τ L ) ] + C 5 cos ⁡ [ 2 N Φ ( t − τ R ) − N Φ ( t − τ L ) ] + C 6 cos ⁡ [ N Φ ( t − τ R ) − 2 N Φ ( t − τ L ) ] ] , \begin{aligned} & x_{\mathrm{out}, \mathrm{LNA}}(t) \\ & \qquad G_R a_{\mathrm{TX}}\left[C_1 \cos \left[N \Phi\left(t-\tau_R\right)\right]\right. \\ & \quad+C_2 \cos \left[(N \pm 1) \Phi\left(t-\tau_R\right)\right] \\ & \quad+C_3 \cos \left[N \Phi\left(t-\tau_L\right)\right]+C_4 \cos \left[(N \pm 1) \Phi\left(t-\tau_L\right)\right] \\ & \quad+C_5 \cos \left[2 N \Phi\left(t-\tau_R\right)-N \Phi\left(t-\tau_L\right)\right] \\ & \left.\quad+C_6 \cos \left[N \Phi\left(t-\tau_R\right)-2 N \Phi\left(t-\tau_L\right)\right]\right],\end{aligned} xout,LNA(t)GRaTX[C1cos[NΦ(tτR)]+C2cos[(N±1)Φ(tτR)]+C3cos[NΦ(tτL)]+C4cos[(N±1)Φ(tτL)]+C5cos[2NΦ(tτR)NΦ(tτL)]+C6cos[NΦ(tτR)2NΦ(tτL)]],
    • IF signal x I F ( t ) ≈ a I F [ C 1 cos ⁡ [ N Ψ 1 ( t ) ] + C 2 k r e f cos ⁡ [ ( N ± 1 ) Ψ 1 ( t ) ] + C 3 cos ⁡ [ N Ψ 2 ( t ) ] + C 4 k r e f cos ⁡ [ ( N ± 1 ) Ψ 2 ( t ) ] + C 5 cos ⁡ [ N Ψ 3 ( t ) ] + C 6 cos ⁡ [ N Ψ 4 ( t ) ] ] \begin{aligned} x_{\mathrm{IF}}(t) \approx & a_{\mathrm{IF}}\left[C_1 \cos \left[N \Psi_1(t)\right]+C_2 k_{\mathrm{ref}} \cos \left[(N \pm 1) \Psi_1(t)\right]\right. \\ & +C_3 \cos \left[N \Psi_2(t)\right]+C_4 k_{\mathrm{ref}} \cos \left[(N \pm 1) \Psi_2(t)\right] \\ & \left.+C_5 \cos \left[N \Psi_3(t)\right]+C_6 \cos \left[N \Psi_4(t)\right]\right]\end{aligned} xIF(t)aIF[C1cos[NΨ1(t)]+C2krefcos[(N±1)Ψ1(t)]+C3cos[NΨ2(t)]+C4krefcos[(N±1)Ψ2(t)]+C5cos[NΨ3(t)]+C6cos[NΨ4(t)]]
  • The Spurs level in the IF:

    • k I F ≈ [ 1 + r 2 − β ( 3 + 2 r 2 ) P i n , L N A P 1 d B , L N A 1 + r 2 − β ( 1 + 2 r 2 ) P i n , L N A P 1 d B , L N A ] [ 1 − 3 β P i n , P A P d d B , P A 1 − β P i n , P A P 1 d B , P A ] × A R X A T X k r e f 2 . \begin{gathered}k_{\mathrm{IF}} \approx\left[\frac{1+r^2-\beta\left(3+2 r^2\right) \frac{P_{\mathrm{in}, \mathrm{LNA}}}{P_{1 \mathrm{~dB}, \mathrm{LNA}}}}{1+r^2-\beta\left(1+2 r^2\right) \frac{P_{\mathrm{in}, \mathrm{LNA}}}{P_{1 \mathrm{~dB}, \mathrm{LNA}}}}\right]\left[\frac{1-3 \beta \frac{P_{\mathrm{in}, \mathrm{PA}}}{P_{\mathrm{ddB}, \mathrm{PA}}}}{1-\beta \frac{P_{\mathrm{in}, \mathrm{PA}}}{P_{1 \mathrm{~dB}, \mathrm{PA}}}}\right] \\ \times A_{\mathrm{RX}} A_{\mathrm{TX}} k_{\mathrm{ref}}^2 .\end{gathered} kIF 1+r2β(1+2r2)P1 dB,LNAPin,LNA1+r2β(3+2r2)P1 dB,LNAPin,LNA 1βP1 dB,PAPin,PA13βPddB,PAPin,PA ×ARXATXkref2.

    • 取决于:

      ✅ Reference harmonics

      ✅ Leakage signal power

      ✅ PA/LNA nonlinearity

      ✅ TX/RX bandwidth

      ✅ IF filter attenuation

    • PA和LNA工作在线性功率范围时 (即 P i n , P A ≪ P 1 d B , P A P_{\mathrm{in}, \mathrm{PA}} \ll P_{1 \mathrm{~dB}, \mathrm{PA}} Pin,PAP1 dB,PA and P i n , L N A ≪ P 1 d B , L N A P_{\mathrm{in}, \mathrm{LNA}} \ll P_{1 \mathrm{~dB}, \mathrm{LNA}} Pin,LNAP1 dB,LNA):

      k I F ≈ A R X A T X k r e f 2 k_{\mathrm{IF}} \approx A_{\mathrm{RX}} A_{\mathrm{TX}} k_{\mathrm{ref}}^2 kIFARXATXkref2.

      🚩 ⇒ \Rightarrow PA和LNA的非线性有利于降低谐波 (因为上式中的前两项总是小于1)

  • Leakage signal

    • Introduces new undesired components

    • 如下图Fig 6所示

    • 该理论能够指导:当给定相对泄露功率时,所需要的IF BPF阻带衰减

      A I F , L / H A_{IF,L/H} AIF,L/H 需使得 k I F , I I < k I F k_{\mathrm{IF}, \mathrm{II}}<k_{\mathrm{IF}} kIF,II<kIF & k I F , I V < k I F k_{\mathrm{IF}, \mathrm{IV}}<k_{\mathrm{IF}} kIF,IV<kIF

在这里插入图片描述

图 3

3.3 Radar Dynamic Range
  • Radar dynamic range (DR) :

    • D R n o i s e DR_{noise} DRnoise : Difference between RX signal power and noise floor

    • D R s p u r DR_{spur} DRspur (DR = D R s p u r DR_{spur} DRspur, 如果spur功率高于噪声功率): Difference between signal power and maximum spur level

  • DR can be maximized by:

    • Limiting largest spur below noise floor

    • D R s p u r = D R n o i s e DR_{spur} = DR_{noise} DRspur=DRnoise

  • D R s p u r DR_{spur} DRspur can be derived as:

    • − 20 log ⁡ 10 ( k I F , max ⁡ ) = P R X , max ⁡ + 174 − N F − 10 log ⁡ 10 ( B n ) -20 \log _{10}\left(k_{\mathrm{IF}, \max }\right)=P_{\mathrm{RX}, \max }+174-N F-10 \log _{10}\left(B_n\right) 20log10(kIF,max)=PRX,max+174NF10log10(Bn),

    • P R X , m a x P_{RX,max} PRX,max: Maximum RX input power

    • N F NF NF: Noise figure

    • B n B_n Bn: Noise bandwidth

    • k I F , max ⁡ k_{\mathrm{IF}, \max } kIF,max: Maximum spur level in IF

  • 上述对DR的限制能够作为约束计算如下参数:

    • Frequency multiplier harmonics

    • TX-RX leakage power

    • PA/LNA nonlinearity

4 Simulations and Discussions

4.1 Simulation Setup
  • 140 GHz chirp signal, 5 GHz bandwidth
  • ×8 frequency multiplier (17.5G reference signal) with -20 dBc harmonics
  • ADS and MATLAB used for TX/RX circuit modeling
  • Target: at 10 m range
4.2 Radar IF Spectrum
  • Compared theory and simulations for various nonlinearities

  • Impact of circuit nonlinearities on radar IF spectrum

在这里插入图片描述

  • Impact of leakage signal:
    • ≤0.5 dB difference up to 0 dB leakage power
    • Discrepancy increases to 2-3 dB at higher leakage
    • Extra spur observed besides two harmonic spurs
    • Amplitude matches theory
    • Location depends on leakage delay

在这里插入图片描述

Developed model provides accurate results

4.3 Radar Range-Doppler Diagram
  • Shows probability of false alarm due to spurs
  • Reduced with PA/LNA nonlinearity
  • Leakage signal spur increases false alarm

在这里插入图片描述

  • Developed theory provides:
    • Guidelines for IF filter attenuation
    • Required harmonic/leakage/nonlinearity levels

5 Conclusion

  • 本文为FMCW毫米波系统的分析提供了一个非线性模型
  • 模型考虑了收发机的多个组件带来的影响
  • 能够预测雷达IF中Spurs的频率和幅度,为电路设计提供参考
查看全文

99%的人还看了

猜你感兴趣

版权申明

本文"TRS 2023 | Spurs in Millimeter-Wave FMCW Radar System-on-Chip":http://eshow365.cn/6-28855-0.html 内容来自互联网,请自行判断内容的正确性。如有侵权请联系我们,立即删除!