《动手学深度学习 Pytorch版》 10.5 多头注意力
最佳答案 问答题库548位专家为你答疑解惑
多头注意力(multihead attention):用独立学习得到的 h 组不同的线性投影(linear projections)来变换查询、键和值,然后并行地送到注意力汇聚中。最后,将这 h 个注意力汇聚的输出拼接在一起,并且通过另一个可以学习的线性投影进行变换,以产生最终输出。
对于 h 个注意力汇聚输出,每一个注意力汇聚都被称作一个头(head)。
10.5.1 模型
用数学语言描述多头注意力:
h i = f ( W i ( q ) q , W i ( k ) k , W i ( v ) v ) ∈ R p \boldsymbol{h}_i=f(\boldsymbol{W}_i^{(q)}\boldsymbol{q},\boldsymbol{W}_i^{(k)}\boldsymbol{k},\boldsymbol{W}_i^{(v)}\boldsymbol{v})\in\R^p hi=f(Wi(q)q,Wi(k)k,Wi(v)v)∈Rp
参数字典:
-
f f f 表示注意力汇聚函数
-
q ∈ R d q \boldsymbol{q}\in\R^{d_q} q∈Rdq、 k ∈ R d k \boldsymbol{k}\in\R^{d_k} k∈Rdk 和 v ∈ R d v \boldsymbol{v}\in\R^{d_v} v∈Rdv 分别是查询、键和值
-
W i ( q ) ∈ R p d × d q \boldsymbol{W}_i^{(q)}\in\R^{p_d\times d_q} Wi(q)∈Rpd×dq、 W i ( k ) ∈ R p k × d k \boldsymbol{W}_i^{(k)}\in\R^{p_k\times d_k} Wi(k)∈Rpk×dk 和 W i ( v ) ∈ R p v × d v \boldsymbol{W}_i^{(v)}\in\R^{p_v\times d_v} Wi(v)∈Rpv×dv 均为可学习参数
多头注意力的输出需要经过另一个线性转换:
y = [ h 1 ⋮ h h ] ∈ R p o y= \begin{bmatrix} \boldsymbol{h}_1\\ \vdots\\ \boldsymbol{h}_h \end{bmatrix} \in\R^{p_o} y= h1⋮hh ∈Rpo
import math
import torch
from torch import nn
from d2l import torch as d2l
10.5.2 实现
在实现过程中通常选择缩放点积注意力作为每一个注意力头。为了避免计算代价和参数代价的大幅增长,设定 p q = p k = p v = p o / h p_q=p_k=p_v=p_o/h pq=pk=pv=po/h。值得注意的是,如果将查询、键和值的线性变换的输出数量设置为 p q h = p k h = p v h = p o p_qh=p_kh=p_vh=p_o pqh=pkh=pvh=po,则可以并行计算 h 个头。在下面的实现中, p o p_o po 是通过参数 num_hiddens 指定的。
MultiHeadAttention 类将使用下面定义的两个转置函数,transpose_output 函数反转了 transpose_qkv 函数的操作。转来转去是为了避免 for 循环。
#@save
def transpose_qkv(X, num_heads):"""为了多注意力头的并行计算而变换形状"""# 输入X的形状:(batch_size,查询或者“键-值”对的个数,num_hiddens)# 输出X的形状:(batch_size,查询或者“键-值”对的个数,num_heads,num_hiddens/num_heads)X = X.reshape(X.shape[0], X.shape[1], num_heads, -1)# 输出X的形状:(batch_size,num_heads,查询或者“键-值”对的个数,num_hiddens/num_heads)X = X.permute(0, 2, 1, 3)# 最终输出的形状:(batch_size*num_heads,查询或者“键-值”对的个数,num_hiddens/num_heads)return X.reshape(-1, X.shape[2], X.shape[3])#@save
def transpose_output(X, num_heads):"""逆转transpose_qkv函数的操作"""X = X.reshape(-1, num_heads, X.shape[1], X.shape[2])X = X.permute(0, 2, 1, 3)return X.reshape(X.shape[0], X.shape[1], -1)
#@save
class MultiHeadAttention(nn.Module):"""多头注意力"""def __init__(self, key_size, query_size, value_size, num_hiddens,num_heads, dropout, bias=False, **kwargs):super(MultiHeadAttention, self).__init__(**kwargs)self.num_heads = num_headsself.attention = d2l.DotProductAttention(dropout)self.W_q = nn.Linear(query_size, num_hiddens, bias=bias)self.W_k = nn.Linear(key_size, num_hiddens, bias=bias)self.W_v = nn.Linear(value_size, num_hiddens, bias=bias)self.W_o = nn.Linear(num_hiddens, num_hiddens, bias=bias)def forward(self, queries, keys, values, valid_lens):# queries,keys,values的形状: (batch_size,查询或者“键-值”对的个数,num_hiddens)# valid_lens 的形状: (batch_size,) 或 (batch_size,查询的个数)# 经过变换后,输出的queries,keys,values 的形状: (batch_size*num_heads,查询或者“键-值”对的个数,num_hiddens/num_heads)queries = transpose_qkv(self.W_q(queries), self.num_heads)keys = transpose_qkv(self.W_k(keys), self.num_heads)values = transpose_qkv(self.W_v(values), self.num_heads)if valid_lens is not None:# 在轴0,将第一项(标量或者矢量)复制num_heads次,然后如此复制第二项,然后诸如此类。valid_lens = torch.repeat_interleave(valid_lens, repeats=self.num_heads, dim=0)# output的形状:(batch_size*num_heads,查询的个数,num_hiddens/num_heads)output = self.attention(queries, keys, values, valid_lens)# output_concat的形状:(batch_size,查询的个数,num_hiddens)output_concat = transpose_output(output, self.num_heads)return self.W_o(output_concat)
num_hiddens, num_heads = 100, 5
attention = MultiHeadAttention(num_hiddens, num_hiddens, num_hiddens,num_hiddens, num_heads, 0.5)
attention.eval()
MultiHeadAttention((attention): DotProductAttention((dropout): Dropout(p=0.5, inplace=False))(W_q): Linear(in_features=100, out_features=100, bias=False)(W_k): Linear(in_features=100, out_features=100, bias=False)(W_v): Linear(in_features=100, out_features=100, bias=False)(W_o): Linear(in_features=100, out_features=100, bias=False)
)
batch_size, num_queries = 2, 4
num_kvpairs, valid_lens = 6, torch.tensor([3, 2])
X = torch.ones((batch_size, num_queries, num_hiddens))
Y = torch.ones((batch_size, num_kvpairs, num_hiddens))
attention(X, Y, Y, valid_lens).shape
torch.Size([2, 4, 100])
练习
(1)分别可视化这个实验中的多个头的注意力权重。
d2l.show_heatmaps(attention.attention.attention_weights.reshape((2, 5, 4, 6)),xlabel='Keys', ylabel='Queries', figsize=(5,5))
(2)假设有一个完成训练的基于多头注意力的模型,现在希望修剪最不重要的注意力头以提高预测速度。如何设计实验来衡量注意力头的重要性呢?
不会,略。
99%的人还看了
相似问题
- 分类预测 | Matlab实现PSO-GRU-Attention粒子群算法优化门控循环单元融合注意力机制多特征分类预测
- 多维时序 | MATLAB实现PSO-BiGRU-Attention粒子群优化双向门控循环单元融合注意力机制的多变量时间序列预测
- 深入理解注意力机制(上)-起源
- 分类预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多特征分类预测
- FSOD论文阅读 - 基于卷积和注意力机制的小样本目标检测
- SEnet注意力机制(逐行代码注释讲解)
- YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头
- YOLOv8改进 | DAttention (DAT)注意力机制实现极限涨点
- 时序预测 | MATLAB实现WOA-CNN-BiLSTM-Attention时间序列预测(SE注意力机制)
- 多维时序 | MATLAB实现TCN-selfAttention自注意力机制结合时间卷积神经网络多变量时间序列预测
猜你感兴趣
版权申明
本文"《动手学深度学习 Pytorch版》 10.5 多头注意力":http://eshow365.cn/6-27688-0.html 内容来自互联网,请自行判断内容的正确性。如有侵权请联系我们,立即删除!